Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Feb;42(2):108–120. doi: 10.1136/jmg.2004.023754

Automated genomic sequence analysis of the three collagen VI genes: applications to Ullrich congenital muscular dystrophy and Bethlem myopathy

A Lampe 1, D Dunn 1, A C von Niederhausern 1, C Hamil 1, A Aoyagi 1, S Laval 1, S Marie 1, M Chu 1, K Swoboda 1, F Muntoni 1, C Bonnemann 1, K Flanigan 1, K Bushby 1, R Weiss 1
PMCID: PMC1736000  PMID: 15689448

Abstract

Introduction: Mutations in the genes encoding collagen VI (COL6A1, COL6A2, and COL6A3) cause Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). BM is a relatively mild dominantly inherited disorder with proximal weakness and distal joint contractures. UCMD is an autosomal recessive condition causing severe muscle weakness with proximal joint contractures and distal hyperlaxity.

Methods: We developed a method for rapid direct sequence analysis of all 107 coding exons of the COL6 genes using single condition amplification/internal primer (SCAIP) sequencing. We have sequenced all three COL6 genes from genomic DNA in 79 patients with UCMD or BM.

Results: We found putative mutations in one of the COL6 genes in 62% of patients. This more than doubles the number of identified COL6 mutations. Most of these changes are consistent with straightforward autosomal dominant or recessive inheritance. However, some patients showed changes in more than one of the COL6 genes, and our results suggest that some UCMD patients may have dominantly acting mutations rather than recessive disease.

Discussion: Our findings may explain some or all of the cases of UCMD that are unlinked to the COL6 loci under a recessive model. The large number of single nucleotide polymorphisms which we generated in the course of this work may be of importance in determining the major phenotypic variability seen in this group of disorders.

Full Text

The Full Text of this article is available as a PDF (163.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bethlem J., Wijngaarden G. K. Benign myopathy, with autosomal dominant inheritance. A report on three pedigrees. Brain. 1976 Mar;99(1):91–100. doi: 10.1093/brain/99.1.91. [DOI] [PubMed] [Google Scholar]
  2. Burg M. A., Tillet E., Timpl R., Stallcup W. B. Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem. 1996 Oct 18;271(42):26110–26116. doi: 10.1074/jbc.271.42.26110. [DOI] [PubMed] [Google Scholar]
  3. Camacho Vanegas O., Bertini E., Zhang R. Z., Petrini S., Minosse C., Sabatelli P., Giusti B., Chu M. L., Pepe G. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A. 2001 May 29;98(13):7516–7521. doi: 10.1073/pnas.121027598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu M. L., Pan T. C., Conway D., Saitta B., Stokes D., Kuo H. J., Glanville R. W., Timpl R., Mann K., Deutzmann R. The structure of type VI collagen. Ann N Y Acad Sci. 1990;580:55–63. doi: 10.1111/j.1749-6632.1990.tb17917.x. [DOI] [PubMed] [Google Scholar]
  5. Cotton R. G., Scriver C. R. Proof of "disease causing" mutation. Hum Mutat. 1998;12(1):1–3. doi: 10.1002/(SICI)1098-1004(1998)12:1<1::AID-HUMU1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  6. Demir Ercan, Sabatelli Patrizia, Allamand Valérie, Ferreiro Ana, Moghadaszadeh Behzad, Makrelouf Mohamed, Topaloglu Haluk, Echenne Bernard, Merlini Luciano, Guicheney Pascale. Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet. 2002 Apr 24;70(6):1446–1458. doi: 10.1086/340608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn Diane M., Ishigami Tomoaki, Pankow James, von Niederhausern Andrew, Alder Jonathan, Hunt Steven C., Leppert Mark F., Lalouel Jean-Marc, Weiss Robert B. Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J Hum Genet. 2002;47(12):665–676. doi: 10.1007/s100380200102. [DOI] [PubMed] [Google Scholar]
  8. Dziadek Marie, Kazenwadel Janette S., Hendrey Jaqueline A., Pan Te-Cheng, Zhang Rui-Zhu, Chu Mon-Li. Alternative splicing of transcripts for the alpha 3 chain of mouse collagen VI: identification of an abundant isoform lacking domains N7-N10 in mouse and human. Matrix Biol. 2002 Apr;21(3):227–241. doi: 10.1016/s0945-053x(02)00009-4. [DOI] [PubMed] [Google Scholar]
  9. Emery Alan E. H. The muscular dystrophies. Lancet. 2002 Feb 23;359(9307):687–695. doi: 10.1016/S0140-6736(02)07815-7. [DOI] [PubMed] [Google Scholar]
  10. Engvall E., Hessle H., Klier G. Molecular assembly, secretion, and matrix deposition of type VI collagen. J Cell Biol. 1986 Mar;102(3):703–710. doi: 10.1083/jcb.102.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ewing B., Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998 Mar;8(3):186–194. [PubMed] [Google Scholar]
  12. Ewing B., Hillier L., Wendl M. C., Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998 Mar;8(3):175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  13. Flanigan Kevin M., von Niederhausern Andrew, Dunn Diane M., Alder Jonathan, Mendell Jerry R., Weiss Robert B. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet. 2003 Mar 11;72(4):931–939. doi: 10.1086/374176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Furthmayr H., Wiedemann H., Timpl R., Odermatt E., Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J. 1983 May 1;211(2):303–311. doi: 10.1042/bj2110303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Furukawa T., Toyokura Y. Congenital, hypotonic-sclerotic muscular dystrophy. J Med Genet. 1977 Dec;14(6):426–429. doi: 10.1136/jmg.14.6.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordon D., Abajian C., Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998 Mar;8(3):195–202. doi: 10.1101/gr.8.3.195. [DOI] [PubMed] [Google Scholar]
  17. Heiskanen M., Saitta B., Palotie A., Chu M. L. Head to tail organization of the human COL6A1 and COL6A2 genes by fiber-FISH. Genomics. 1995 Oct 10;29(3):801–803. doi: 10.1006/geno.1995.9008. [DOI] [PubMed] [Google Scholar]
  18. Helbling-Leclerc A., Zhang X., Topaloglu H., Cruaud C., Tesson F., Weissenbach J., Tomé F. M., Schwartz K., Fardeau M., Tryggvason K. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995 Oct;11(2):216–218. doi: 10.1038/ng1095-216. [DOI] [PubMed] [Google Scholar]
  19. Higuchi I., Shiraishi T., Hashiguchi T., Suehara M., Niiyama T., Nakagawa M., Arimura K., Maruyama I., Osame M. Frameshift mutation in the collagen VI gene causes Ullrich's disease. Ann Neurol. 2001 Aug;50(2):261–265. doi: 10.1002/ana.1120. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa H., Sugie K., Murayama K., Awaya A., Suzuki Y., Noguchi S., Hayashi Y. K., Nonaka I., Nishino I. Ullrich disease due to deficiency of collagen VI in the sarcolemma. Neurology. 2004 Feb 24;62(4):620–623. doi: 10.1212/01.wnl.0000113023.84421.00. [DOI] [PubMed] [Google Scholar]
  21. Ishikawa H., Sugie K., Murayama K., Ito M., Minami N., Nishino I., Nonaka I. Ullrich disease: collagen VI deficiency: EM suggests a new basis for muscular weakness. Neurology. 2002 Sep 24;59(6):920–923. doi: 10.1212/wnl.59.6.920. [DOI] [PubMed] [Google Scholar]
  22. Jöbsis G. J., Boers J. M., Barth P. G., de Visser M. Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain. 1999 Apr;122(Pt 4):649–655. doi: 10.1093/brain/122.4.649. [DOI] [PubMed] [Google Scholar]
  23. Jöbsis G. J., Keizers H., Vreijling J. P., de Visser M., Speer M. C., Wolterman R. A., Baas F., Bolhuis P. A. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet. 1996 Sep;14(1):113–115. doi: 10.1038/ng0996-113. [DOI] [PubMed] [Google Scholar]
  24. Kent W. James, Sugnet Charles W., Furey Terrence S., Roskin Krishna M., Pringle Tom H., Zahler Alan M., Haussler David. The human genome browser at UCSC. Genome Res. 2002 Jun;12(6):996–1006. doi: 10.1101/gr.229102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuo H. J., Maslen C. L., Keene D. R., Glanville R. W. Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J Biol Chem. 1997 Oct 17;272(42):26522–26529. doi: 10.1074/jbc.272.42.26522. [DOI] [PubMed] [Google Scholar]
  26. Lamandé S. R., Bateman J. F., Hutchison W., McKinlay Gardner R. J., Bower S. P., Byrne E., Dahl H. H. Reduced collagen VI causes Bethlem myopathy: a heterozygous COL6A1 nonsense mutation results in mRNA decay and functional haploinsufficiency. Hum Mol Genet. 1998 Jun;7(6):981–989. doi: 10.1093/hmg/7.6.981. [DOI] [PubMed] [Google Scholar]
  27. Lamandé S. R., Shields K. A., Kornberg A. J., Shield L. K., Bateman J. F. Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J Biol Chem. 1999 Jul 30;274(31):21817–21822. doi: 10.1074/jbc.274.31.21817. [DOI] [PubMed] [Google Scholar]
  28. Lamandé S. R., Sigalas E., Pan T. C., Chu M. L., Dziadek M., Timpl R., Bateman J. F. The role of the alpha3(VI) chain in collagen VI assembly. Expression of an alpha3(VI) chain lacking N-terminal modules N10-N7 restores collagen VI assembly, secretion, and matrix deposition in an alpha3(VI)-deficient cell line. J Biol Chem. 1998 Mar 27;273(13):7423–7430. doi: 10.1074/jbc.273.13.7423. [DOI] [PubMed] [Google Scholar]
  29. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  30. Mercuri E., Yuva Y., Brown S. C., Brockington M., Kinali M., Jungbluth H., Feng L., Sewry C. A., Muntoni F. Collagen VI involvement in Ullrich syndrome: a clinical, genetic, and immunohistochemical study. Neurology. 2002 May 14;58(9):1354–1359. doi: 10.1212/wnl.58.9.1354. [DOI] [PubMed] [Google Scholar]
  31. Nonaka I., Une Y., Ishihara T., Miyoshino S., Nakashima T., Sugita H. A clinical and histological study of Ullrich's disease (congenital atonic-sclerotic muscular dystrophy). Neuropediatrics. 1981 Aug;12(3):197–208. doi: 10.1055/s-2008-1059651. [DOI] [PubMed] [Google Scholar]
  32. Pan T. C., Zhang R. Z., Pericak-Vance M. A., Tandan R., Fries T., Stajich J. M., Viles K., Vance J. M., Chu M. L., Speer M. C. Missense mutation in a von Willebrand factor type A domain of the alpha 3(VI) collagen gene (COL6A3) in a family with Bethlem myopathy. Hum Mol Genet. 1998 May;7(5):807–812. doi: 10.1093/hmg/7.5.807. [DOI] [PubMed] [Google Scholar]
  33. Pan Te-Cheng, Zhang Rui-Zhu, Sudano Dominick G., Marie Suely K., Bönnemann Carsten G., Chu Mon-Li. New molecular mechanism for Ullrich congenital muscular dystrophy: a heterozygous in-frame deletion in the COL6A1 gene causes a severe phenotype. Am J Hum Genet. 2003 Jul 1;73(2):355–369. doi: 10.1086/377107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pepe G., Bertini E., Giusti B., Brunelli T., Comeglio P., Saitta B., Merlini L., Chu M. L., Federici G., Abbate R. A novel de novo mutation in the triple helix of the COL6A3 gene in a two-generation Italian family affected by Bethlem myopathy. A diagnostic approach in the mutations' screening of type VI collagen. Neuromuscul Disord. 1999 Jun;9(4):264–271. doi: 10.1016/s0960-8966(99)00014-0. [DOI] [PubMed] [Google Scholar]
  35. Pepe G., Giusti B., Bertini E., Brunelli T., Saitta B., Comeglio P., Bolognese A., Merlini L., Federici G., Abbate R. A heterozygous splice site mutation in COL6A1 leading to an in-frame deletion of the alpha1(VI) collagen chain in an italian family affected by bethlem myopathy. Biochem Biophys Res Commun. 1999 May 19;258(3):802–807. doi: 10.1006/bbrc.1999.0680. [DOI] [PubMed] [Google Scholar]
  36. Pepe Guglielmina, Bertini Enrico, Bonaldo Paolo, Bushby Kate, Giusti Betti, de Visser Marianne, Guicheney Pascale, Lattanzi Giovanna, Merlini Luciano, Muntoni Francesco. Bethlem myopathy (BETHLEM) and Ullrich scleroatonic muscular dystrophy: 100th ENMC international workshop, 23-24 November 2001, Naarden, The Netherlands. Neuromuscul Disord. 2002 Dec;12(10):984–993. doi: 10.1016/s0960-8966(02)00139-6. [DOI] [PubMed] [Google Scholar]
  37. Pepe Guglielmina, de Visser Marianne, Bertini Enrico, Bushby Kate, Vanegas Olga Camacho, Chu Mon Li, Lattanzi Giovanna, Merlini Luciano, Muntoni Francesco, Urtizberea Andoni. Bethlem myopathy (BETHLEM) 86th ENMC international workshop, 10-11 November 2000, Naarden, The Netherlands. Neuromuscul Disord. 2002 Mar;12(3):296–305. doi: 10.1016/s0960-8966(01)00275-9. [DOI] [PubMed] [Google Scholar]
  38. Saitta B., Stokes D. G., Vissing H., Timpl R., Chu M. L. Alternative splicing of the human alpha 2(VI) collagen gene generates multiple mRNA transcripts which predict three protein variants with distinct carboxyl termini. J Biol Chem. 1990 Apr 15;265(11):6473–6480. [PubMed] [Google Scholar]
  39. Sasaki T., Hohenester E., Zhang R. Z., Gotta S., Speer M. C., Tandan R., Timpl R., Chu M. L. A Bethlem myopathy Gly to Glu mutation in the von Willebrand factor A domain N2 of the collagen alpha3(VI) chain interferes with protein folding. FASEB J. 2000 Apr;14(5):761–768. doi: 10.1096/fasebj.14.5.761. [DOI] [PubMed] [Google Scholar]
  40. Scacheri P. C., Gillanders E. M., Subramony S. H., Vedanarayanan V., Crowe C. A., Thakore N., Bingler M., Hoffman E. P. Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology. 2002 Feb 26;58(4):593–602. doi: 10.1212/wnl.58.4.593. [DOI] [PubMed] [Google Scholar]
  41. Sewry C. A., Muntoni F. Inherited disorders of the extracellular matrix. Curr Opin Neurol. 1999 Oct;12(5):519–526. doi: 10.1097/00019052-199910000-00005. [DOI] [PubMed] [Google Scholar]
  42. Stephens R. M., Schneider T. D. Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J Mol Biol. 1992 Dec 20;228(4):1124–1136. doi: 10.1016/0022-2836(92)90320-j. [DOI] [PubMed] [Google Scholar]
  43. Stokes D. G., Saitta B., Timpl R., Chu M. L. Human alpha 3(VI) collagen gene. Characterization of exons coding for the amino-terminal globular domain and alternative splicing in normal and tumor cells. J Biol Chem. 1991 May 5;266(13):8626–8633. [PubMed] [Google Scholar]
  44. Vanegas Olga Camacho, Zhang Rui-Zhu, Sabatelli Patrizia, Lattanzi Giovanna, Bencivenga Paola, Giusti Betti, Columbaro Marta, Chu Mon-Li, Merlini Luciano, Pepe Guglielmina. Novel COL6A1 splicing mutation in a family affected by mild Bethlem myopathy. Muscle Nerve. 2002 Apr;25(4):513–519. doi: 10.1002/mus.10100. [DOI] [PubMed] [Google Scholar]
  45. Weil D., Mattei M. G., Passage E., N'Guyen V. C., Pribula-Conway D., Mann K., Deutzmann R., Timpl R., Chu M. L. Cloning and chromosomal localization of human genes encoding the three chains of type VI collagen. Am J Hum Genet. 1988 Mar;42(3):435–445. [PMC free article] [PubMed] [Google Scholar]
  46. Wiberg Charlotte, Klatt Andreas R., Wagener Raimund, Paulsson Mats, Bateman John F., Heinegård Dick, Mörgelin Matthias. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem. 2003 Jul 1;278(39):37698–37704. doi: 10.1074/jbc.M304638200. [DOI] [PubMed] [Google Scholar]
  47. von der Mark H., Aumailley M., Wick G., Fleischmajer R., Timpl R. Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem. 1984 Aug 1;142(3):493–502. doi: 10.1111/j.1432-1033.1984.tb08313.x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Web-Only Table]
jmedgene_42_2_108__1.pdf (102.3KB, pdf)

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES