Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Mar;42(3):235–239. doi: 10.1136/jmg.2004.024075

Linkage to the FOXC2 region of chromosome 16 for varicose veins in otherwise healthy, unselected sibling pairs

M Ng 1, T Andrew 1, T Spector 1, S Jeffery 1, t (representing 1
PMCID: PMC1736007  PMID: 15744037

Abstract

Background: The FOXC2 gene on 16q24 is mutated in lymphoedema distichiasis (LD), in which varicose veins (VV) are a common feature. We hypothesised that this gene might be implicated in the development of VV in the normal population, therefore, after performing a classical twin study, we tested for linkage and association in white women. We also tested for linkage with haemorrhoids (H), as a separate venous anomaly at the same locus.

Methods: A total of 2060 complete female twin pairs aged 18–80 years from the St Thomas' Adult UK Twin registry replied to questions on VV and H as part of a broader postal survey of 6600 twins (62% response rate). Dizygotic female twin pairs were tested for linkage and association to the candidate marker D16S520 (1903 individuals genotyped), which is located about 80 kb from FOXC2.

Results: Casewise concordance rates were significantly higher for monozygotic than dizygotic twins for both phenotypes (VV 67% v 45%; p = 2.2x10–6; H 68% v 59%; p = 0.01; H including during pregnancy 73% v 64%; p = 2.1x10–4), corresponding to additive genetic heritabilities in liability of 86% (95% confidence interval (CI) 73% to 99%) for VV and 56–61% for H (95% CI 43% to 73%). The presence of VV and H were significantly correlated. We found significant evidence of linkage to the marker for VV (MLSASP = 1.37, p = 0.01; GLMASP/DSP Z = 3.17 p = 0.002), but no association. Both linkage and association tests were negative for H. The combined phenotype of having VV and H did not show any evidence of linkage or association.

Conclusion: These results demonstrate VV and H to be heritable, related conditions, and the data strongly suggest FOXC2 to be implicated in the development of VV in the general population.

Full Text

The Full Text of this article is available as a PDF (94.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew T., Hart D. J., Snieder H., de Lange M., Spector T. D., MacGregor A. J. Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res. 2001 Dec;4(6):464–477. doi: 10.1375/1369052012803. [DOI] [PubMed] [Google Scholar]
  2. Barber Mathew J., Cordell Heather J., MacGregor Alex J., Andrew Toby. Gamma regression improves Haseman-Elston and variance components linkage analysis for sib-pairs. Genet Epidemiol. 2004 Feb;26(2):97–107. doi: 10.1002/gepi.10299. [DOI] [PubMed] [Google Scholar]
  3. Bell R., Brice G., Child A. H., Murday V. A., Mansour S., Sandy C. J., Collin J. R., Brady A. F., Callen D. F., Burnand K. Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum Genet. 2001 Jun;108(6):546–551. doi: 10.1007/s004390100528. [DOI] [PubMed] [Google Scholar]
  4. Brice G., Mansour S., Bell R., Collin J. R. O., Child A. H., Brady A. F., Sarfarazi M., Burnand K. G., Jeffery S., Mortimer P. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet. 2002 Jul;39(7):478–483. doi: 10.1136/jmg.39.7.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cordell H. J., Wedig G. C., Jacobs K. B., Elston R. C. Multilocus linkage tests based on affected relative pairs. Am J Hum Genet. 2000 Mar 21;66(4):1273–1286. doi: 10.1086/302847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeFries J. C., Fulker D. W. Multiple regression analysis of twin data. Behav Genet. 1985 Sep;15(5):467–473. doi: 10.1007/BF01066239. [DOI] [PubMed] [Google Scholar]
  7. Erickson R. P., Dagenais S. L., Caulder M. S., Downs C. A., Herman G., Jones M. C., Kerstjens-Frederikse W. S., Lidral A. C., McDonald M., Nelson C. C. Clinical heterogeneity in lymphoedema-distichiasis with FOXC2 truncating mutations. J Med Genet. 2001 Nov;38(11):761–766. doi: 10.1136/jmg.38.11.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fang J., Dagenais S. L., Erickson R. P., Arlt M. F., Glynn M. W., Gorski J. L., Seaver L. H., Glover T. W. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000 Nov 8;67(6):1382–1388. doi: 10.1086/316915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finegold D. N., Kimak M. A., Lawrence E. C., Levinson K. L., Cherniske E. M., Pober B. R., Dunlap J. W., Ferrell R. E. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet. 2001 May 15;10(11):1185–1189. doi: 10.1093/hmg/10.11.1185. [DOI] [PubMed] [Google Scholar]
  10. Hauge M., Gundersen J. Genetics of varicose veins of the lower extremities. Hum Hered. 1969;19(5):573–580. doi: 10.1159/000152268. [DOI] [PubMed] [Google Scholar]
  11. Kriederman Benjamin M., Myloyde Teressa L., Witte Marlys H., Dagenais Susan L., Witte Charles L., Rennels Margaret, Bernas Michael J., Lynch Michelle T., Erickson Robert P., Caulder Mark S. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet. 2003 May 15;12(10):1179–1185. doi: 10.1093/hmg/ddg123. [DOI] [PubMed] [Google Scholar]
  12. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  13. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  14. Kume T., Jiang H., Topczewska J. M., Hogan B. L. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 2001 Sep 15;15(18):2470–2482. doi: 10.1101/gad.907301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehmann Ordan J., Tuft Stephen, Brice Glen, Smith Richard, Blixt Asa, Bell Rachel, Johansson Bengt, Jordan Tim, Hitchings Roger A., Khaw Peng T. Novel anterior segment phenotypes resulting from forkhead gene alterations: evidence for cross-species conservation of function. Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2627–2633. doi: 10.1167/iovs.02-0609. [DOI] [PubMed] [Google Scholar]
  16. Mangion J., Rahman N., Mansour S., Brice G., Rosbotham J., Child A. H., Murday V. A., Mortimer P. S., Barfoot R., Sigurdsson A. A gene for lymphedema-distichiasis maps to 16q24.3. Am J Hum Genet. 1999 Aug;65(2):427–432. doi: 10.1086/302500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matousek V., Prerovský I. A contribution to the problem of the inheritance of primary varicose veins. Hum Hered. 1974;24(3):225–235. doi: 10.1159/000152655. [DOI] [PubMed] [Google Scholar]
  18. Pritchard L. E., Kawaguchi Y., Reed P. W., Copeman J. B., Davies J. L., Barnett A. H., Bain S. C., Todd J. A. Analysis of the CD3 gene region and type 1 diabetes: application of fluorescence-based technology to linkage disequilibrium mapping. Hum Mol Genet. 1995 Feb;4(2):197–202. doi: 10.1093/hmg/4.2.197. [DOI] [PubMed] [Google Scholar]
  19. Purcell S., Cherny S. S., Sham P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003 Jan;19(1):149–150. doi: 10.1093/bioinformatics/19.1.149. [DOI] [PubMed] [Google Scholar]
  20. Reed P. W., Davies J. L., Copeman J. B., Bennett S. T., Palmer S. M., Pritchard L. E., Gough S. C., Kawaguchi Y., Cordell H. J., Balfour K. M. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet. 1994 Jul;7(3):390–395. doi: 10.1038/ng0794-390. [DOI] [PubMed] [Google Scholar]
  21. Reich David E., Schaffner Stephen F., Daly Mark J., McVean Gil, Mullikin James C., Higgins John M., Richter Daniel J., Lander Eric S., Altshuler David. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet. 2002 Aug 5;32(1):135–142. doi: 10.1038/ng947. [DOI] [PubMed] [Google Scholar]
  22. Risch N. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev. 2001 Jul;10(7):733–741. [PubMed] [Google Scholar]
  23. Rosbotham J. L., Brice G. W., Child A. H., Nunan T. O., Mortimer P. S., Burnand K. G. Distichiasis-lymphoedema: clinical features, venous function and lymphoscintigraphy. Br J Dermatol. 2000 Jan;142(1):148–152. doi: 10.1046/j.1365-2133.2000.03258.x. [DOI] [PubMed] [Google Scholar]
  24. Sham P. C., Cherny S. S., Purcell S., Hewitt J. K. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am J Hum Genet. 2000 Apr 12;66(5):1616–1630. doi: 10.1086/302891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sham P. C., Curtis D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet. 1995 Jan;59(Pt 1):97–105. doi: 10.1111/j.1469-1809.1995.tb01608.x. [DOI] [PubMed] [Google Scholar]
  26. Sham P. C., Walters E. E., Neale M. C., Heath A. C., MacLean C. J., Kendler K. S. Logistic regression analysis of twin data: estimation of parameters of the multifactorial liability-threshold model. Behav Genet. 1994 May;24(3):229–238. doi: 10.1007/BF01067190. [DOI] [PubMed] [Google Scholar]
  27. Spector Tim D., MacGregor Alex J. The St. Thomas' UK Adult Twin Registry. Twin Res. 2002 Oct;5(5):440–443. doi: 10.1375/136905202320906246. [DOI] [PubMed] [Google Scholar]
  28. Winnier G. E., Hargett L., Hogan B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 1997 Apr 1;11(7):926–940. doi: 10.1101/gad.11.7.926. [DOI] [PubMed] [Google Scholar]
  29. Winnier G. E., Kume T., Deng K., Rogers R., Bundy J., Raines C., Walter M. A., Hogan B. L., Conway S. J. Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev Biol. 1999 Sep 15;213(2):418–431. doi: 10.1006/dbio.1999.9382. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES