Abstract
HIV strains are unable to enter macrophages that carry the CCR5-Δ32 deletion; the average frequency of this allele is 10% in European populations. A mathematical model based on the changing demography of Europe from 1000 to 1800 AD demonstrates how plague epidemics, 1347 to 1670, could have provided the selection pressure that raised the frequency of the mutation to the level seen today. It is suggested that the original single mutation appeared over 2500 years ago and that persistent epidemics of a haemorrhagic fever that struck at the early classical civilisations served to force up the frequency to about 5x10–5 at the time of the Black Death in 1347.
Full Text
The Full Text of this article is available as a PDF (118.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
- Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
- Christensen Peter. "In these perilous times": plague and plague policies in early modern Denmark. Med Hist. 2003 Oct;47(4):413–450. [PMC free article] [PubMed] [Google Scholar]
- Coleman M., Scurlock J. Viral haemorrhagic fevers in ancient Mesopotamia. Trop Med Int Health. 1997 Jun;2(6):603–606. doi: 10.1046/j.1365-3156.1997.d01-329.x. [DOI] [PubMed] [Google Scholar]
- Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., Goedert J. J., Buchbinder S. P., Vittinghoff E., Gomperts E. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996 Sep 27;273(5283):1856–1862. doi: 10.1126/science.273.5283.1856. [DOI] [PubMed] [Google Scholar]
- Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
- Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., Parmentier M., Collman R. G., Doms R. W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996 Jun 28;85(7):1149–1158. doi: 10.1016/s0092-8674(00)81314-8. [DOI] [PubMed] [Google Scholar]
- Huang Y., Paxton W. A., Wolinsky S. M., Neumann A. U., Zhang L., He T., Kang S., Ceradini D., Jin Z., Yazdanbakhsh K. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996 Nov;2(11):1240–1243. doi: 10.1038/nm1196-1240. [DOI] [PubMed] [Google Scholar]
- Lalani A. S., Masters J., Zeng W., Barrett J., Pannu R., Everett H., Arendt C. W., McFadden G. Use of chemokine receptors by poxviruses. Science. 1999 Dec 3;286(5446):1968–1971. doi: 10.1126/science.286.5446.1968. [DOI] [PubMed] [Google Scholar]
- Libert F., Cochaux P., Beckman G., Samson M., Aksenova M., Cao A., Czeizel A., Claustres M., de la Rúa C., Ferrari M. The deltaccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum Mol Genet. 1998 Mar;7(3):399–406. doi: 10.1093/hmg/7.3.399. [DOI] [PubMed] [Google Scholar]
- Marmor M., Sheppard H. W., Donnell D., Bozeman S., Celum C., Buchbinder S., Koblin B., Seage G. R., 3rd, HIV Network for Prevention Trials Vaccine Preparedness Protocol Team Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. 2001 Aug 15;27(5):472–481. doi: 10.1097/00126334-200108150-00009. [DOI] [PubMed] [Google Scholar]
- Mecsas Joan, Franklin Greg, Kuziel William A., Brubaker Robert R., Falkow Stanley, Mosier Donald E. Evolutionary genetics: CCR5 mutation and plague protection. Nature. 2004 Feb 12;427(6975):606–606. doi: 10.1038/427606a. [DOI] [PubMed] [Google Scholar]
- Michael N. L., Chang G., Louie L. G., Mascola J. R., Dondero D., Birx D. L., Sheppard H. W. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997 Mar;3(3):338–340. doi: 10.1038/nm0397-338. [DOI] [PubMed] [Google Scholar]
- Qin Xiao-Feng, An Dong Sung, Chen Irvin S. Y., Baltimore David. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A. 2002 Dec 23;100(1):183–188. doi: 10.1073/pnas.232688199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C. M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996 Aug 22;382(6593):722–725. doi: 10.1038/382722a0. [DOI] [PubMed] [Google Scholar]
- Stephens J. C., Reich D. E., Goldstein D. B., Shin H. D., Smith M. W., Carrington M., Winkler C., Huttley G. A., Allikmets R., Schriml L. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998 Jun;62(6):1507–1515. doi: 10.1086/301867. [DOI] [PMC free article] [PubMed] [Google Scholar]