Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Apr;42(4):307–313. doi: 10.1136/jmg.2004.027755

Multiple mechanisms are implicated in the generation of 5q35 microdeletions in Sotos syndrome

K Tatton-Brown 1, J Douglas 1, K Coleman 1, G Baujat 1, K Chandler 1, A Clarke 1, A Collins 1, S Davies 1, F Faravelli 1, H Firth 1, C Garrett 1, H Hughes 1, B Kerr 1, J Liebelt 1, W Reardon 1, G Schaefer 1, M Splitt 1, I Temple 1, D Waggoner 1, D Weaver 1, L Wilson 1, T Cole 1, V Cormier-Daire 1, A Irrthum 1, N Rahman 1, b on 1
PMCID: PMC1736029  PMID: 15805156

Abstract

Background: Sotos syndrome (MIM 117550) is characterised by learning difficulties, overgrowth, and a typical facial appearance. Microdeletions at 5q35.3, encompassing NSD1, are responsible for ∼10% of non-Japanese cases of Sotos. In contrast, a recurrent ∼2 Mb microdeletion has been reported as responsible for ∼50% of Japanese cases of Sotos.

Methods: We screened 471 cases for NSD1 mutations and deletions and identified 23 with 5q35 microdeletions. We investigated the deletion size, parent of origin, and mechanism of generation in these and a further 10 cases identified from published reports. We used "in silico" analyses to investigate whether repetitive elements that could generate microdeletions flank NSD1.

Results: Three repetitive elements flanking NSD1, designated REPcen, REPmid, and REPtel, were identified. Up to 18 cases may have the same sized deletion, but at least eight unique deletion sizes were identified, ranging from 0.4 to 5 Mb. In most instances, the microdeletion arose through interchromosomal rearrangements of the paternally inherited chromosome.

Conclusions: Frequency, size, and mechanism of generation of 5q35 microdeletions differ between Japanese and non-Japanese cases of Sotos. Our microdeletions were identified from a large case series with a broad range of phenotypes, suggesting that sample selection variability is unlikely as a sole explanation for these differences and that variation in genomic architecture might be a contributory factor. Non-allelic homologous recombination between REPcen and REPtel may have generated up to 18 microdeletion cases in our series. However, at least 15 cannot be mediated by these repeats, including at least seven deletions of different sizes, implicating multiple mechanisms in the generation of 5q35 microdeletions.

Full Text

The Full Text of this article is available as a PDF (121.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayés Mònica, Magano Luis F., Rivera Núria, Flores Raquel, Pérez Jurado Luis A. Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet. 2003 Jun 9;73(1):131–151. doi: 10.1086/376565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broman K. W., Murray J. C., Sheffield V. C., White R. L., Weber J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998 Sep;63(3):861–869. doi: 10.1086/302011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole T. R., Hughes H. E. Sotos syndrome: a study of the diagnostic criteria and natural history. J Med Genet. 1994 Jan;31(1):20–32. doi: 10.1136/jmg.31.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Douglas Jenny, Hanks Sandra, Temple I. Karen, Davies Sally, Murray Alexandra, Upadhyaya Meena, Tomkins Susan, Hughes Helen E., Cole Trevor R. P., Rahman Nazneen. NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes. Am J Hum Genet. 2002 Dec 2;72(1):132–143. doi: 10.1086/345647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gimelli Giorgio, Pujana Miguel Angel, Patricelli Maria Grazia, Russo Silvia, Giardino Daniela, Larizza Lidia, Cheung Joseph, Armengol Lluís, Schinzel Albert, Estivill Xavier. Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum Mol Genet. 2003 Apr 15;12(8):849–858. doi: 10.1093/hmg/ddg101. [DOI] [PubMed] [Google Scholar]
  6. Kurotaki Naohiro, Harada Naoki, Shimokawa Osamu, Miyake Noriko, Kawame Hiroshi, Uetake Kimiaki, Makita Yoshio, Kondoh Tatsuro, Ogata Tsutomu, Hasegawa Tomoko. Fifty microdeletions among 112 cases of Sotos syndrome: low copy repeats possibly mediate the common deletion. Hum Mutat. 2003 Nov;22(5):378–387. doi: 10.1002/humu.10270. [DOI] [PubMed] [Google Scholar]
  7. Kurotaki Naohiro, Imaizumi Kiyoshi, Harada Naoki, Masuno Mitsuo, Kondoh Tatsuro, Nagai Toshiro, Ohashi Hirofumi, Naritomi Kenji, Tsukahara Masato, Makita Yoshio. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet. 2002 Mar 18;30(4):365–366. doi: 10.1038/ng863. [DOI] [PubMed] [Google Scholar]
  8. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  9. Luciani J. J., de Mas P., Depetris D., Mignon-Ravix C., Bottani A., Prieur M., Jonveaux P., Philippe A., Bourrouillou G., de Martinville B. Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet. 2003 Sep;40(9):690–696. doi: 10.1136/jmg.40.9.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miyake Noriko, Kurotaki Naohiro, Sugawara Hirobumi, Shimokawa Osamu, Harada Naoki, Kondoh Tatsuro, Tsukahara Masato, Ishikiriyama Satoshi, Sonoda Tohru, Miyoshi Yoko. Preferential paternal origin of microdeletions caused by prezygotic chromosome or chromatid rearrangements in Sotos syndrome. Am J Hum Genet. 2003 Apr 9;72(5):1331–1337. doi: 10.1086/375166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Quarrell O. W., Snell R. G., Curtis M. A., Roberts S. H., Harper P. S., Shaw D. J. Paternal origin of the chromosomal deletion resulting in Wolf-Hirschhorn syndrome. J Med Genet. 1991 Apr;28(4):256–259. doi: 10.1136/jmg.28.4.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rio M., Clech L., Amiel J., Faivre L., Lyonnet S., Le Merrer M., Odent S., Lacombe D., Edery P., Brauner R. Spectrum of NSD1 mutations in Sotos and Weaver syndromes. J Med Genet. 2003 Jun;40(6):436–440. doi: 10.1136/jmg.40.6.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shaw Christine J., Withers Marjorie A., Lupski James R. Uncommon deletions of the Smith-Magenis syndrome region can be recurrent when alternate low-copy repeats act as homologous recombination substrates. Am J Hum Genet. 2004 May 13;75(1):75–81. doi: 10.1086/422016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tatton-Brown Katrina, Rahman Nazneen. Clinical features of NSD1-positive Sotos syndrome. Clin Dysmorphol. 2004 Oct;13(4):199–204. [PubMed] [Google Scholar]
  15. Türkmen Seval, Gillessen-Kaesbach Gabriele, Meinecke Peter, Albrecht Beate, Neumann Luitgard M., Hesse Volker, Palanduz Sükrü, Balg Stefanie, Majewski Frank, Fuchs Sigrun. Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes. Eur J Hum Genet. 2003 Nov;11(11):858–865. doi: 10.1038/sj.ejhg.5201050. [DOI] [PubMed] [Google Scholar]
  16. Visser Remco, Matsumoto Naomichi. Genetics of Sotos syndrome. Curr Opin Pediatr. 2003 Dec;15(6):598–606. doi: 10.1097/00008480-200312000-00010. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES