Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 May;42(5):379–389. doi: 10.1136/jmg.2004.024158

Genetics of congenital hypothyroidism

S Park 1, V Chatterjee 1
PMCID: PMC1736062  PMID: 15863666

Abstract

Congenital hypothyroidism is the most common neonatal metabolic disorder and results in severe neurodevelopmental impairment and infertility if untreated. Congenital hypothyroidism is usually sporadic but up to 2% of thyroid dysgenesis is familial, and congenital hypothyroidism caused by organification defects is often recessively inherited. The candidate genes associated with this genetically heterogeneous disorder form two main groups: those causing thyroid gland dysgenesis and those causing dyshormonogenesis. Genes associated with thyroid gland dysgenesis include the TSH receptor in non-syndromic congenital hypothyroidism, and Gsα and the thyroid transcription factors (TTF-1, TTF-2, and Pax-8), associated with different complex syndromes that include congenital hypothyroidism. Among those causing dyshormonogenesis, the thyroid peroxidase and thyroglobulin genes were initially described, and more recently PDS (Pendred syndrome), NIS (sodium iodide symporter), and THOX2 (thyroid oxidase 2) gene defects. There is also early evidence for a third group of congenital hypothyroid conditions associated with iodothyronine transporter defects associated with severe neurological sequelae. This review focuses on the genetic aspects of primary congenital hypothyroidism.

Full Text

The Full Text of this article is available as a PDF (221.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowicz M. J., Duprez L., Parma J., Vassart G., Heinrichs C. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J Clin Invest. 1997 Jun 15;99(12):3018–3024. doi: 10.1172/JCI119497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abramowicz M. J., Targovnik H. M., Varela V., Cochaux P., Krawiec L., Pisarev M. A., Propato F. V., Juvenal G., Chester H. A., Vassart G. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest. 1992 Oct;90(4):1200–1204. doi: 10.1172/JCI115981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agrawal P., Ogilvy-Stuart A., Lees C. Intrauterine diagnosis and management of congenital goitrous hypothyroidism. Ultrasound Obstet Gynecol. 2002 May;19(5):501–505. doi: 10.1046/j.1469-0705.2002.00717.x. [DOI] [PubMed] [Google Scholar]
  4. Alberti Luisella, Proverbio Maria Carla, Costagliola Sabine, Romoli Roberto, Boldrighini Benedetta, Vigone Maria Cristina, Weber Giovanna, Chiumello Giuseppe, Beck-Peccoz Paolo, Persani Luca. Germline mutations of TSH receptor gene as cause of nonautoimmune subclinical hypothyroidism. J Clin Endocrinol Metab. 2002 Jun;87(6):2549–2555. doi: 10.1210/jcem.87.6.8536. [DOI] [PubMed] [Google Scholar]
  5. Aldred M. A., Trembath R. C. Activating and inactivating mutations in the human GNAS1 gene. Hum Mutat. 2000 Sep;16(3):183–189. doi: 10.1002/1098-1004(200009)16:3<183::AID-HUMU1>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  6. Ambrugger P., Stoeva I., Biebermann H., Torresani T., Leitner C., Grüters A. Novel mutations of the thyroid peroxidase gene in patients with permanent congenital hypothyroidism. Eur J Endocrinol. 2001 Jul;145(1):19–24. doi: 10.1530/eje.0.1450019. [DOI] [PubMed] [Google Scholar]
  7. BATSAKIS J. G., NISHIYAMA R. H. Deafness with sporadic goiter. Pendred's syndrome. Arch Otolaryngol. 1962 Nov;76:401–406. doi: 10.1001/archotol.1962.00740050413004. [DOI] [PubMed] [Google Scholar]
  8. Bakker B., Bikker H., Vulsma T., de Randamie J. S., Wiedijk B. M., De Vijlder J. J. Two decades of screening for congenital hypothyroidism in The Netherlands: TPO gene mutations in total iodide organification defects (an update). J Clin Endocrinol Metab. 2000 Oct;85(10):3708–3712. doi: 10.1210/jcem.85.10.6878. [DOI] [PubMed] [Google Scholar]
  9. Bamforth J. S., Hughes I. A., Lazarus J. H., Weaver C. M., Harper P. S. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989 Jan;26(1):49–51. doi: 10.1136/jmg.26.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bergé-Lefranc J. L., Cartouzou G., Mattéi M. G., Passage E., Malezet-Desmoulins C., Lissitzky S. Localization of the thyroglobulin gene by in situ hybridization to human chromosomes. Hum Genet. 1985;69(1):28–31. doi: 10.1007/BF00295525. [DOI] [PubMed] [Google Scholar]
  11. Biebermann H., Schöneberg T., Krude H., Schultz G., Gudermann T., Grüters A. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. J Clin Endocrinol Metab. 1997 Oct;82(10):3471–3480. doi: 10.1210/jcem.82.10.4286. [DOI] [PubMed] [Google Scholar]
  12. Bikker H., Vulsma T., Baas F., de Vijlder J. J. Identification of five novel inactivating mutations in the human thyroid peroxidase gene by denaturing gradient gel electrophoresis. Hum Mutat. 1995;6(1):9–16. doi: 10.1002/humu.1380060104. [DOI] [PubMed] [Google Scholar]
  13. Bikker H., Waelkens J. J., Bravenboer B., de Vijlder J. J. Congenital hypothyroidism caused by a premature termination signal in exon 10 of the human thyroid peroxidase gene. J Clin Endocrinol Metab. 1996 Jun;81(6):2076–2079. doi: 10.1210/jcem.81.6.8964831. [DOI] [PubMed] [Google Scholar]
  14. Bikker H., den Hartog M. T., Baas F., Gons M. H., Vulsma T., de Vijlder J. J. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism. J Clin Endocrinol Metab. 1994 Jul;79(1):248–252. doi: 10.1210/jcem.79.1.8027236. [DOI] [PubMed] [Google Scholar]
  15. Bongers-Schokking J. J., Koot H. M., Wiersma D., Verkerk P. H., de Muinck Keizer-Schrama S. M. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. J Pediatr. 2000 Mar;136(3):292–297. doi: 10.1067/mpd.2000.103351. [DOI] [PubMed] [Google Scholar]
  16. Breedveld Guido J., van Dongen Jeroen W. F., Danesino Cesare, Guala Andrea, Percy Alan K., Dure Leon S., Harper Peter, Lazarou Lazarus P., van der Linde Herma, Joosse Marijke. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet. 2002 Apr 15;11(8):971–979. doi: 10.1093/hmg/11.8.971. [DOI] [PubMed] [Google Scholar]
  17. Bruno M. D., Bohinski R. J., Huelsman K. M., Whitsett J. A., Korfhagen T. R. Lung cell-specific expression of the murine surfactant protein A (SP-A) gene is mediated by interactions between the SP-A promoter and thyroid transcription factor-1. J Biol Chem. 1995 Mar 24;270(12):6531–6536. doi: 10.1074/jbc.270.12.6531. [DOI] [PubMed] [Google Scholar]
  18. Caillou B., Dupuy C., Lacroix L., Nocera M., Talbot M., Ohayon R., Dème D., Bidart J. M., Schlumberger M., Virion A. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab. 2001 Jul;86(7):3351–3358. doi: 10.1210/jcem.86.7.7646. [DOI] [PubMed] [Google Scholar]
  19. Cao X. Y., Jiang X. M., Dou Z. H., Rakeman M. A., Zhang M. L., O'Donnell K., Ma T., Amette K., DeLong N., DeLong G. R. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N Engl J Med. 1994 Dec 29;331(26):1739–1744. doi: 10.1056/NEJM199412293312603. [DOI] [PubMed] [Google Scholar]
  20. Castanet M., Polak M., Bonaïti-Pellié C., Lyonnet S., Czernichow P., Léger J., AFDPHE (Association Française pour le Dépistage et la Prévention des Handicaps de l'Enfant) Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab. 2001 May;86(5):2009–2014. doi: 10.1210/jcem.86.5.7501. [DOI] [PubMed] [Google Scholar]
  21. Castanet Mireille, Park Soo-Mi, Smith Aaron, Bost Michel, Léger Juliane, Lyonnet Stanislas, Pelet Anna, Czernichow Paul, Chatterjee Krishna, Polak Michel. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Hum Mol Genet. 2002 Aug 15;11(17):2051–2059. doi: 10.1093/hmg/11.17.2051. [DOI] [PubMed] [Google Scholar]
  22. Civitareale D., Lonigro R., Sinclair A. J., Di Lauro R. A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J. 1989 Sep;8(9):2537–2542. doi: 10.1002/j.1460-2075.1989.tb08391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Clifton-Bligh R. J., Gregory J. W., Ludgate M., John R., Persani L., Asteria C., Beck-Peccoz P., Chatterjee V. K. Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance to TSH. J Clin Endocrinol Metab. 1997 Apr;82(4):1094–1100. doi: 10.1210/jcem.82.4.3863. [DOI] [PubMed] [Google Scholar]
  24. Clifton-Bligh R. J., Wentworth J. M., Heinz P., Crisp M. S., John R., Lazarus J. H., Ludgate M., Chatterjee V. K. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet. 1998 Aug;19(4):399–401. doi: 10.1038/1294. [DOI] [PubMed] [Google Scholar]
  25. Congdon T., Nguyen L. Q., Nogueira C. R., Habiby R. L., Medeiros-Neto G., Kopp P. A novel mutation (Q40P) in PAX8 associated with congenital hypothyroidism and thyroid hypoplasia: evidence for phenotypic variability in mother and child. J Clin Endocrinol Metab. 2001 Aug;86(8):3962–3967. doi: 10.1210/jcem.86.8.7765. [DOI] [PubMed] [Google Scholar]
  26. Corvilain B., van Sande J., Laurent E., Dumont J. E. The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid. Endocrinology. 1991 Feb;128(2):779–785. doi: 10.1210/endo-128-2-779. [DOI] [PubMed] [Google Scholar]
  27. Dai G., Levy O., Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996 Feb 1;379(6564):458–460. doi: 10.1038/379458a0. [DOI] [PubMed] [Google Scholar]
  28. Damante G., Di Lauro R. Thyroid-specific gene expression. Biochim Biophys Acta. 1994 Aug 2;1218(3):255–266. doi: 10.1016/0167-4781(94)90176-7. [DOI] [PubMed] [Google Scholar]
  29. Dathan Nina, Parlato Rosanna, Rosica Annamaria, De Felice Mario, Di Lauro Roberto. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn. 2002 Aug;224(4):450–456. doi: 10.1002/dvdy.10118. [DOI] [PubMed] [Google Scholar]
  30. De Felice M., Damante G., Zannini M., Francis-Lang H., Di Lauro R. Redundant domains contribute to the transcriptional activity of the thyroid transcription factor 1. J Biol Chem. 1995 Nov 3;270(44):26649–26656. doi: 10.1074/jbc.270.44.26649. [DOI] [PubMed] [Google Scholar]
  31. De Felice M., Ovitt C., Biffali E., Rodriguez-Mallon A., Arra C., Anastassiadis K., Macchia P. E., Mattei M. G., Mariano A., Schöler H. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet. 1998 Aug;19(4):395–398. doi: 10.1038/1289. [DOI] [PubMed] [Google Scholar]
  32. Derksen-Lubsen G., Verkerk P. H. Neuropsychologic development in early treated congenital hypothyroidism: analysis of literature data. Pediatr Res. 1996 Mar;39(3):561–566. doi: 10.1203/00006450-199603000-00028. [DOI] [PubMed] [Google Scholar]
  33. Devriendt K., Vanhole C., Matthijs G., de Zegher F. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998 Apr 30;338(18):1317–1318. doi: 10.1056/NEJM199804303381817. [DOI] [PubMed] [Google Scholar]
  34. Doyle Daniel A., Gonzalez Iris, Thomas Becky, Scavina Mena. Autosomal dominant transmission of congenital hypothyroidism, neonatal respiratory distress, and ataxia caused by a mutation of NKX2-1. J Pediatr. 2004 Aug;145(2):190–193. doi: 10.1016/j.jpeds.2004.04.011. [DOI] [PubMed] [Google Scholar]
  35. Dubuis J. M., Glorieux J., Richer F., Deal C. L., Dussault J. H., Van Vliet G. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. J Clin Endocrinol Metab. 1996 Jan;81(1):222–227. doi: 10.1210/jcem.81.1.8550756. [DOI] [PubMed] [Google Scholar]
  36. Dumitrescu Alexandra M., Liao Xiao-Hui, Best Thomas B., Brockmann Knut, Refetoff Samuel. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2003 Dec 5;74(1):168–175. doi: 10.1086/380999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Duprez L., Parma J., Van Sande J., Allgeier A., Leclère J., Schvartz C., Delisle M. J., Decoulx M., Orgiazzi J., Dumont J. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet. 1994 Jul;7(3):396–401. doi: 10.1038/ng0794-396. [DOI] [PubMed] [Google Scholar]
  38. Endo Y., Onogi S., Umeki K., Yamamoto I., Kotani T., Ohtaki S., Fujita T. Regional localization of the gene for thyroid peroxidase to human chromosome 2p25 and mouse chromosome 12C. Genomics. 1995 Feb 10;25(3):760–761. doi: 10.1016/0888-7543(95)80028-k. [DOI] [PubMed] [Google Scholar]
  39. Espinoza C. R., Schmitt T. L., Loos U. Thyroid transcription factor 1 and Pax8 synergistically activate the promoter of the human thyroglobulin gene. J Mol Endocrinol. 2001 Aug;27(1):59–67. doi: 10.1677/jme.0.0270059. [DOI] [PubMed] [Google Scholar]
  40. Evans C., Jordan N. J., Owens G., Bradley D., Ludgate M., John R. Potent thyrotrophin receptor-blocking antibodies: a cause of transient congenital hypothyroidism and delayed thyroid development. Eur J Endocrinol. 2004 Mar;150(3):265–268. doi: 10.1530/eje.0.1500265. [DOI] [PubMed] [Google Scholar]
  41. Everett L. A., Glaser B., Beck J. C., Idol J. R., Buchs A., Heyman M., Adawi F., Hazani E., Nassir E., Baxevanis A. D. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997 Dec;17(4):411–422. doi: 10.1038/ng1297-411. [DOI] [PubMed] [Google Scholar]
  42. Fraizer G. C., Shimamura R., Zhang X., Saunders G. F. PAX 8 regulates human WT1 transcription through a novel DNA binding site. J Biol Chem. 1997 Dec 5;272(49):30678–30687. doi: 10.1074/jbc.272.49.30678. [DOI] [PubMed] [Google Scholar]
  43. Francis-Lang H., Price M., Polycarpou-Schwarz M., Di Lauro R. Cell-type-specific expression of the rat thyroperoxidase promoter indicates common mechanisms for thyroid-specific gene expression. Mol Cell Biol. 1992 Feb;12(2):576–588. doi: 10.1128/mcb.12.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Friesema Edith C. H., Ganguly Sumita, Abdalla Amal, Manning Fox Jocelyn E., Halestrap Andrew P., Visser Theo J. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003 Jul 18;278(41):40128–40135. doi: 10.1074/jbc.M300909200. [DOI] [PubMed] [Google Scholar]
  45. Fujiwara H., Tatsumi K., Miki K., Harada T., Miyai K., Takai S., Amino N. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet. 1997 Jun;16(2):124–125. doi: 10.1038/ng0697-124. [DOI] [PubMed] [Google Scholar]
  46. Gagné N., Parma J., Deal C., Vassart G., Van Vliet G. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? J Clin Endocrinol Metab. 1998 May;83(5):1771–1775. doi: 10.1210/jcem.83.5.4771. [DOI] [PubMed] [Google Scholar]
  47. Grant D. B., Smith I., Fuggle P. W., Tokar S., Chapple J. Congenital hypothyroidism detected by neonatal screening: relationship between biochemical severity and early clinical features. Arch Dis Child. 1992 Jan;67(1):87–90. doi: 10.1136/adc.67.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Grant D. B., Smith I. Survey of neonatal screening for primary hypothyroidism in England, Wales, and Northern Ireland 1982-4. Br Med J (Clin Res Ed) 1988 May 14;296(6633):1355–1358. doi: 10.1136/bmj.296.6633.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Gross B., Misrahi M., Sar S., Milgrom E. Composite structure of the human thyrotropin receptor gene. Biochem Biophys Res Commun. 1991 Jun 14;177(2):679–687. doi: 10.1016/0006-291x(91)91842-z. [DOI] [PubMed] [Google Scholar]
  50. Guazzi S., Price M., De Felice M., Damante G., Mattei M. G., Di Lauro R. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990 Nov;9(11):3631–3639. doi: 10.1002/j.1460-2075.1990.tb07574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Harvey R. P. NK-2 homeobox genes and heart development. Dev Biol. 1996 Sep 15;178(2):203–216. doi: 10.1006/dbio.1996.0212. [DOI] [PubMed] [Google Scholar]
  52. Heyerdahl S., Kase B. F., Lie S. O. Intellectual development in children with congenital hypothyroidism in relation to recommended thyroxine treatment. J Pediatr. 1991 Jun;118(6):850–857. doi: 10.1016/s0022-3476(05)82194-8. [DOI] [PubMed] [Google Scholar]
  53. Hishinuma A., Ohyama Y., Kuribayashi T., Nagakubo N., Namatame T., Shibayama K., Arisaka O., Matsuura N., Ieiri T. Polymorphism of the polyalanine tract of thyroid transcription factor-2 gene in patients with thyroid dysgenesis. Eur J Endocrinol. 2001 Oct;145(4):385–389. doi: 10.1530/eje.0.1450385. [DOI] [PubMed] [Google Scholar]
  54. Hishinuma A., Takamatsu J., Ohyama Y., Yokozawa T., Kanno Y., Kuma K., Yoshida S., Matsuura N., Ieiri T. Two novel cysteine substitutions (C1263R and C1995S) of thyroglobulin cause a defect in intracellular transport of thyroglobulin in patients with congenital goiter and the variant type of adenomatous goiter. J Clin Endocrinol Metab. 1999 Apr;84(4):1438–1444. doi: 10.1210/jcem.84.4.5633. [DOI] [PubMed] [Google Scholar]
  55. Iwatani N., Mabe H., Devriendt K., Kodama M., Miike T. Deletion of NKX2.1 gene encoding thyroid transcription factor-1 in two siblings with hypothyroidism and respiratory failure. J Pediatr. 2000 Aug;137(2):272–276. doi: 10.1067/mpd.2000.107111. [DOI] [PubMed] [Google Scholar]
  56. Jordan N., Williams N., Gregory J. W., Evans C., Owen M., Ludgate M. The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid dysfunction in a Caucasian population. J Clin Endocrinol Metab. 2003 Mar;88(3):1002–1005. doi: 10.1210/jc.2002-021301. [DOI] [PubMed] [Google Scholar]
  57. Kim P. S., Hossain S. A., Park Y. N., Lee I., Yoo S. E., Arvan P. A single amino acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse: a model of human endoplasmic reticulum storage diseases. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9909–9913. doi: 10.1073/pnas.95.17.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kim P. S., Kwon O. Y., Arvan P. An endoplasmic reticulum storage disease causing congenital goiter with hypothyroidism. J Cell Biol. 1996 May;133(3):517–527. doi: 10.1083/jcb.133.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C. H., Ward J. M., Gonzalez F. J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996 Jan 1;10(1):60–69. doi: 10.1101/gad.10.1.60. [DOI] [PubMed] [Google Scholar]
  60. Kohn Leonard D., Harii Norikazu. Thyrotropin receptor autoantibodies (TSHRAbs): epitopes, origins and clinical significance. Autoimmunity. 2003 Sep-Nov;36(6-7):331–337. doi: 10.1080/08916930310001604199. [DOI] [PubMed] [Google Scholar]
  61. Kosugi S., Sato Y., Matsuda A., Ohyama Y., Fujieda K., Inomata H., Kameya T., Isozaki O., Jhiang S. M. High prevalence of T354P sodium/iodide symporter gene mutation in Japanese patients with iodide transport defect who have heterogeneous clinical pictures. J Clin Endocrinol Metab. 1998 Nov;83(11):4123–4129. doi: 10.1210/jcem.83.11.5229. [DOI] [PubMed] [Google Scholar]
  62. Kotani T., Umeki K., Yamamoto I., Maesaka H., Tachibana K., Ohtaki S. A novel mutation in the human thyroid peroxidase gene resulting in a total iodide organification defect. J Endocrinol. 1999 Feb;160(2):267–273. doi: 10.1677/joe.0.1600267. [DOI] [PubMed] [Google Scholar]
  63. Kotani T., Umeki K., Yamamoto I., Ohtaki S., Adachi M., Tachibana K. Iodide organification defects resulting from cosegregation of mutated and null thyroid peroxidase alleles. Mol Cell Endocrinol. 2001 Aug 20;182(1):61–68. doi: 10.1016/s0303-7207(01)00547-0. [DOI] [PubMed] [Google Scholar]
  64. Kozasa T., Itoh H., Tsukamoto T., Kaziro Y. Isolation and characterization of the human Gs alpha gene. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2081–2085. doi: 10.1073/pnas.85.7.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Krude Heiko, Schütz Barbara, Biebermann Heike, von Moers Arpad, Schnabel Dirk, Neitzel Heidi, Tönnies Holger, Weise Dagmar, Lafferty Antony, Schwarz Siegfried. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002 Feb;109(4):475–480. doi: 10.1172/JCI14341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Law W. Y., Bradley D. M., Lazarus J. H., John R., Gregory J. W. Congenital hypothyroidism in Wales (1982-1993): demographic features, clinical presentation and effects on early neurodevelopment. Clin Endocrinol (Oxf) 1998 Feb;48(2):201–207. doi: 10.1046/j.1365-2265.1998.3791206.x. [DOI] [PubMed] [Google Scholar]
  67. Lazzaro D., Price M., de Felice M., Di Lauro R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development. 1991 Dec;113(4):1093–1104. doi: 10.1242/dev.113.4.1093. [DOI] [PubMed] [Google Scholar]
  68. Libert F., Passage E., Lefort A., Vassart G., Mattei M. G. Localization of human thyrotropin receptor gene to chromosome region 14q3 by in situ hybridization. Cytogenet Cell Genet. 1990;54(1-2):82–83. doi: 10.1159/000132964. [DOI] [PubMed] [Google Scholar]
  69. Lints T. J., Parsons L. M., Hartley L., Lyons I., Harvey R. P. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993 Oct;119(2):419–431. doi: 10.1242/dev.119.2.419. [DOI] [PubMed] [Google Scholar]
  70. Macchia P. E., Lapi P., Krude H., Pirro M. T., Missero C., Chiovato L., Souabni A., Baserga M., Tassi V., Pinchera A. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet. 1998 May;19(1):83–86. doi: 10.1038/ng0598-83. [DOI] [PubMed] [Google Scholar]
  71. Mangklabruks A., Billerbeck A. E., Wajchenberg B., Knobel M., Cox N. J., DeGroot L. J., Medeiros-Neto G. Genetic linkage studies of thyroid peroxidase (TPO) gene in families with TPO deficiency. J Clin Endocrinol Metab. 1991 Feb;72(2):471–476. doi: 10.1210/jcem-72-2-471. [DOI] [PubMed] [Google Scholar]
  72. Manley N. R., Capecchi M. R. The role of Hoxa-3 in mouse thymus and thyroid development. Development. 1995 Jul;121(7):1989–2003. doi: 10.1242/dev.121.7.1989. [DOI] [PubMed] [Google Scholar]
  73. Mansouri A., Chowdhury K., Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998 May;19(1):87–90. doi: 10.1038/ng0598-87. [DOI] [PubMed] [Google Scholar]
  74. Mansouri A., Hallonet M., Gruss P. Pax genes and their roles in cell differentiation and development. Curr Opin Cell Biol. 1996 Dec;8(6):851–857. doi: 10.1016/s0955-0674(96)80087-1. [DOI] [PubMed] [Google Scholar]
  75. Masmoudi S., Charfedine I., Hmani M., Grati M., Ghorbel A. M., Elgaied-Boulila A., Drira M., Hardelin J. P., Ayadi H. Pendred syndrome: phenotypic variability in two families carrying the same PDS missense mutation. Am J Med Genet. 2000 Jan 3;90(1):38–44. [PubMed] [Google Scholar]
  76. Medeiros-Neto G., Gil-Da-Costa M. J., Santos C. L., Medina A. M., Silva J. C., Tsou R. M., Sobrinho-Simões M. Metastatic thyroid carcinoma arising from congenital goiter due to mutation in the thyroperoxidase gene. J Clin Endocrinol Metab. 1998 Nov;83(11):4162–4166. doi: 10.1210/jcem.83.11.5264. [DOI] [PubMed] [Google Scholar]
  77. Medeiros-Neto G., Kim P. S., Yoo S. E., Vono J., Targovnik H. M., Camargo R., Hossain S. A., Arvan P. Congenital hypothyroid goiter with deficient thyroglobulin. Identification of an endoplasmic reticulum storage disease with induction of molecular chaperones. J Clin Invest. 1996 Dec 15;98(12):2838–2844. doi: 10.1172/JCI119112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Meeus Laurent, Gilbert Brigitte, Rydlewski Catherine, Parma Jasmine, Roussie Anne Lienhardt, Abramowicz Marc, Vilain Catheline, Christophe Daniel, Costagliola Sabine, Vassart Gilbert. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab. 2004 Sep;89(9):4285–4291. doi: 10.1210/jc.2004-0166. [DOI] [PubMed] [Google Scholar]
  79. Meunier Dominique, Aubin Josée, Jeannotte Lucie. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn. 2003 Jul;227(3):367–378. doi: 10.1002/dvdy.10325. [DOI] [PubMed] [Google Scholar]
  80. Moreno José C., Bikker Hennie, Kempers Marlies J. E., van Trotsenburg A. S. Paul, Baas Frank, de Vijlder Jan J. M., Vulsma Thomas, Ris-Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 2002 Jul 11;347(2):95–102. doi: 10.1056/NEJMoa012752. [DOI] [PubMed] [Google Scholar]
  81. Nagashima T., Murakami M., Onigata K., Morimura T., Nagashima K., Mori M., Morikawa A. Novel inactivating missense mutations in the thyrotropin receptor gene in Japanese children with resistance to thyrotropin. Thyroid. 2001 Jun;11(6):551–559. doi: 10.1089/105072501750302859. [DOI] [PubMed] [Google Scholar]
  82. Ohno M., Zannini M., Levy O., Carrasco N., di Lauro R. The paired-domain transcription factor Pax8 binds to the upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and cyclic-AMP-dependent transcription. Mol Cell Biol. 1999 Mar;19(3):2051–2060. doi: 10.1128/mcb.19.3.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Pachucki J., Wang D., Christophe D., Miot F. Structural and functional characterization of the two human ThOX/Duox genes and their 5'-flanking regions. Mol Cell Endocrinol. 2004 Feb 12;214(1-2):53–62. doi: 10.1016/j.mce.2003.11.026. [DOI] [PubMed] [Google Scholar]
  84. Pannain S., Weiss R. E., Jackson C. E., Dian D., Beck J. C., Sheffield V. C., Cox N., Refetoff S. Two different mutations in the thyroid peroxidase gene of a large inbred Amish kindred: power and limits of homozygosity mapping. J Clin Endocrinol Metab. 1999 Mar;84(3):1061–1071. doi: 10.1210/jcem.84.3.5541. [DOI] [PubMed] [Google Scholar]
  85. Park S-M, Clifton-Bligh R. J., Betts P., Chatterjee V. K. K. Congenital hypothyroidism and apparent athyreosis with compound heterozygosity or compensated hypothyroidism with probable hemizygosity for inactivating mutations of the TSH receptor. Clin Endocrinol (Oxf) 2004 Feb;60(2):220–227. doi: 10.1111/j.1365-2265.2004.01967.x. [DOI] [PubMed] [Google Scholar]
  86. Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993 Oct 14;365(6447):649–651. doi: 10.1038/365649a0. [DOI] [PubMed] [Google Scholar]
  87. Pasca di Magliano M., Di Lauro R., Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13144–13149. doi: 10.1073/pnas.240336397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Pohlenz J., Duprez L., Weiss R. E., Vassart G., Refetoff S., Costagliola S. Failure of membrane targeting causes the functional defect of two mutant sodium iodide symporters. J Clin Endocrinol Metab. 2000 Jul;85(7):2366–2369. doi: 10.1210/jcem.85.7.6700. [DOI] [PubMed] [Google Scholar]
  89. Pohlenz J., Rosenthal I. M., Weiss R. E., Jhiang S. M., Burant C., Refetoff S. Congenital hypothyroidism due to mutations in the sodium/iodide symporter. Identification of a nonsense mutation producing a downstream cryptic 3' splice site. J Clin Invest. 1998 Mar 1;101(5):1028–1035. doi: 10.1172/JCI1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Pohlenz Joachim, Dumitrescu Alexandra, Zundel Dorothee, Martiné Ursula, Schönberger Winfried, Koo Eugene, Weiss Roy E., Cohen Ronald N., Kimura Shioko, Refetoff Samuel. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest. 2002 Feb;109(4):469–473. doi: 10.1172/JCI14192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Poleev A., Fickenscher H., Mundlos S., Winterpacht A., Zabel B., Fidler A., Gruss P., Plachov D. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development. 1992 Nov;116(3):611–623. doi: 10.1242/dev.116.3.611. [DOI] [PubMed] [Google Scholar]
  92. Poleev A., Wendler F., Fickenscher H., Zannini M. S., Yaginuma K., Abbott C., Plachov D. Distinct functional properties of three human paired-box-protein, PAX8, isoforms generated by alternative splicing in thyroid, kidney and Wilms' tumors. Eur J Biochem. 1995 Mar 15;228(3):899–911. doi: 10.1111/j.1432-1033.1995.tb20338.x. [DOI] [PubMed] [Google Scholar]
  93. Postiglione M. P., Parlato R., Rodriguez-Mallon A., Rosica A., Mithbaokar P., Maresca M., Marians R. C., Davies T. F., Zannini M. S., De Felice M. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A. 2002 Nov 13;99(24):15462–15467. doi: 10.1073/pnas.242328999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Pueblitz S., Weinberg A. G., Albores-Saavedra J. Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol. 1993 Jul-Aug;13(4):463–473. doi: 10.3109/15513819309048236. [DOI] [PubMed] [Google Scholar]
  95. Reardon W., Trembath R. C. Pendred syndrome. J Med Genet. 1996 Dec;33(12):1037–1040. doi: 10.1136/jmg.33.12.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Roberts H. E., Moore C. A., Fernhoff P. M., Brown A. L., Khoury M. J. Population study of congenital hypothyroidism and associated birth defects, Atlanta, 1979-1992. Am J Med Genet. 1997 Jul 11;71(1):29–32. doi: 10.1002/(sici)1096-8628(19970711)71:1<29::aid-ajmg5>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  97. Royaux I. E., Suzuki K., Mori A., Katoh R., Everett L. A., Kohn L. D., Green E. D. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology. 2000 Feb;141(2):839–845. doi: 10.1210/endo.141.2.7303. [DOI] [PubMed] [Google Scholar]
  98. Russo D., Betterle C., Arturi F., Chiefari E., Girelli M. E., Filetti S. A novel mutation in the thyrotropin (TSH) receptor gene causing loss of TSH binding but constitutive receptor activation in a family with resistance to TSH. J Clin Endocrinol Metab. 2000 Nov;85(11):4238–4242. doi: 10.1210/jcem.85.11.6985. [DOI] [PubMed] [Google Scholar]
  99. Santos C. L., Bikker H., Rego K. G., Nascimento A. C., Tambascia M., De Vijlder J. J., Medeiros-Neto G. A novel mutation in the TPO gene in goitrous hypothyroid patients with iodide organification defect. Clin Endocrinol (Oxf) 1999 Aug;51(2):165–172. doi: 10.1046/j.1365-2265.1999.00746.x. [DOI] [PubMed] [Google Scholar]
  100. Scott D. A., Wang R., Kreman T. M., Andrews M., McDonald J. M., Bishop J. R., Smith R. J., Karniski L. P., Sheffield V. C. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet. 2000 Jul 1;9(11):1709–1715. doi: 10.1093/hmg/9.11.1709. [DOI] [PubMed] [Google Scholar]
  101. Scott M. P., Tamkun J. W., Hartzell G. W., 3rd The structure and function of the homeodomain. Biochim Biophys Acta. 1989 Jul 28;989(1):25–48. doi: 10.1016/0304-419x(89)90033-4. [DOI] [PubMed] [Google Scholar]
  102. Sequeira Melwyn, Al-Khafaji Farakid, Park SooMi, Lewis Mark D., Wheeler Malcolm H., Chatterjee V. Krishna K., Jasani Bharat, Ludgate Marian. Production and application of polyclonal antibody to human thyroid transcription factor 2 reveals thyroid transcription factor 2 protein expression in adult thyroid and hair follicles and prepubertal testis. Thyroid. 2003 Oct;13(10):927–932. doi: 10.1089/105072503322511328. [DOI] [PubMed] [Google Scholar]
  103. Smanik P. A., Ryu K. Y., Theil K. S., Mazzaferri E. L., Jhiang S. M. Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology. 1997 Aug;138(8):3555–3558. doi: 10.1210/endo.138.8.5262. [DOI] [PubMed] [Google Scholar]
  104. Stein S. A., Oates E. L., Hall C. R., Grumbles R. M., Fernandez L. M., Taylor N. A., Puett D., Jin S. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol Endocrinol. 1994 Feb;8(2):129–138. doi: 10.1210/mend.8.2.8170469. [DOI] [PubMed] [Google Scholar]
  105. Strader C. D., Fong T. M., Tota M. R., Underwood D., Dixon R. A. Structure and function of G protein-coupled receptors. Annu Rev Biochem. 1994;63:101–132. doi: 10.1146/annurev.bi.63.070194.000533. [DOI] [PubMed] [Google Scholar]
  106. Stuart E. T., Gruss P. PAX genes: what's new in developmental biology and cancer? Hum Mol Genet. 1995;4(Spec No):1717–1720. doi: 10.1093/hmg/4.suppl_1.1717. [DOI] [PubMed] [Google Scholar]
  107. Sunthornthepvarakui T., Gottschalk M. E., Hayashi Y., Refetoff S. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995 Jan 19;332(3):155–160. doi: 10.1056/NEJM199501193320305. [DOI] [PubMed] [Google Scholar]
  108. Targovnik H. M., Frechtel G. D., Mendive F. M., Vono J., Cochaux P., Vassart G., Medeiros-Neto G. Evidence for the segregation of three different mutated alleles of the thyroglobulin gene in a Brazilian family with congenital goiter and hypothyroidism. Thyroid. 1998 Apr;8(4):291–297. doi: 10.1089/thy.1998.8.291. [DOI] [PubMed] [Google Scholar]
  109. Tillotson S. L., Fuggle P. W., Smith I., Ades A. E., Grant D. B. Relation between biochemical severity and intelligence in early treated congenital hypothyroidism: a threshold effect. BMJ. 1994 Aug 13;309(6952):440–445. doi: 10.1136/bmj.309.6952.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Tiosano D., Pannain S., Vassart G., Parma J., Gershoni-Baruch R., Mandel H., Lotan R., Zaharan Y., Pery M., Weiss R. E. The hypothyroidism in an inbred kindred with congenital thyroid hormone and glucocorticoid deficiency is due to a mutation producing a truncated thyrotropin receptor. Thyroid. 1999 Sep;9(9):887–894. doi: 10.1089/thy.1999.9.887. [DOI] [PubMed] [Google Scholar]
  111. Tonacchera M., Agretti P., De Marco G., Perri A., Pinchera A., Vitti P., Chiovato L. Thyroid resistance to TSH complicated by autoimmune thyroiditis. J Clin Endocrinol Metab. 2001 Sep;86(9):4543–4546. doi: 10.1210/jcem.86.9.7791. [DOI] [PubMed] [Google Scholar]
  112. Tonacchera M., Agretti P., Pinchera A., Rosellini V., Perri A., Collecchi P., Vitti P., Chiovato L. Congenital hypothyroidism with impaired thyroid response to thyrotropin (TSH) and absent circulating thyroglobulin: evidence for a new inactivating mutation of the TSH receptor gene. J Clin Endocrinol Metab. 2000 Mar;85(3):1001–1008. doi: 10.1210/jcem.85.3.6460. [DOI] [PubMed] [Google Scholar]
  113. Toublanc J. E. Comparison of epidemiological data on congenital hypothyroidism in Europe with those of other parts in the world. Horm Res. 1992;38(5-6):230–235. doi: 10.1159/000182549. [DOI] [PubMed] [Google Scholar]
  114. Vassart G., Dumont J. E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev. 1992 Aug;13(3):596–611. doi: 10.1210/edrv-13-3-596. [DOI] [PubMed] [Google Scholar]
  115. Vilain C., Rydlewski C., Duprez L., Heinrichs C., Abramowicz M., Malvaux P., Renneboog B., Parma J., Costagliola S., Vassart G. Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation of PAX8. J Clin Endocrinol Metab. 2001 Jan;86(1):234–238. doi: 10.1210/jcem.86.1.7140. [DOI] [PubMed] [Google Scholar]
  116. Williams E. D., Toyn C. E., Harach H. R. The ultimobranchial gland and congenital thyroid abnormalities in man. J Pathol. 1989 Oct;159(2):135–141. doi: 10.1002/path.1711590208. [DOI] [PubMed] [Google Scholar]
  117. Wilson L. C., Oude Luttikhuis M. E., Clayton P. T., Fraser W. D., Trembath R. C. Parental origin of Gs alpha gene mutations in Albright's hereditary osteodystrophy. J Med Genet. 1994 Nov;31(11):835–839. doi: 10.1136/jmg.31.11.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Wolff J. Congenital goiter with defective iodide transport. Endocr Rev. 1983 Summer;4(3):240–254. doi: 10.1210/edrv-4-3-240. [DOI] [PubMed] [Google Scholar]
  119. Yu D., Yu S., Schuster V., Kruse K., Clericuzio C. L., Weinstein L. S. Identification of two novel deletion mutations within the Gs alpha gene (GNAS1) in Albright hereditary osteodystrophy. J Clin Endocrinol Metab. 1999 Sep;84(9):3254–3259. doi: 10.1210/jcem.84.9.5970. [DOI] [PubMed] [Google Scholar]
  120. Zannini M., Avantaggiato V., Biffali E., Arnone M. I., Sato K., Pischetola M., Taylor B. A., Phillips S. J., Simeone A., Di Lauro R. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997 Jun 2;16(11):3185–3197. doi: 10.1093/emboj/16.11.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. de Roux N., Misrahi M., Brauner R., Houang M., Carel J. C., Granier M., Le Bouc Y., Ghinea N., Boumedienne A., Toublanc J. E. Four families with loss of function mutations of the thyrotropin receptor. J Clin Endocrinol Metab. 1996 Dec;81(12):4229–4235. doi: 10.1210/jcem.81.12.8954020. [DOI] [PubMed] [Google Scholar]
  122. de la Chapelle A., Herva R., Koivisto M., Aula P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet. 1981;57(3):253–256. doi: 10.1007/BF00278938. [DOI] [PubMed] [Google Scholar]
  123. van de Graaf S. A., Ris-Stalpers C., Veenboer G. J., Cammenga M., Santos C., Targovnik H. M., de Vijlder J. J., Medeiros-Neto G. A premature stopcodon in thyroglobulin messenger RNA results in familial goiter and moderate hypothyroidism. J Clin Endocrinol Metab. 1999 Jul;84(7):2537–2542. doi: 10.1210/jcem.84.7.5862. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES