Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Jun;42(6):479–484. doi: 10.1136/jmg.2004.030106

Functional polymorphisms in cell death pathway genes FAS and FASL contribute to risk of lung cancer

X Zhang 1, X Miao 1, T Sun 1, W Tan 1, S Qu 1, P Xiong 1, Y Zhou 1, D Lin 1
PMCID: PMC1736067  PMID: 15937082

Abstract

Background: The FAS and FASL system plays a key role in regulating apoptotic cell death and corruption of this signalling pathway has been shown to participate in immune escape and tumorigenesis. There is reduced expression of FAS but elevated expression of FASL in many types of human cancers including lung cancer. We recently reported an association between functional polymorphisms in FAS (–1377G→A) and FASL (–844T→C) and risk of oesophageal cancer.

Objective: To examine the contribution of these polymorphisms to risk of developing lung cancer.

Methods: Genotypes of 1000 lung cancer patients and 1270 controls were analysed by PCR based restriction fragment length polymorphism. Associations with risk of lung cancer were estimated by logistic regression.

Results: Compared with non-carriers, there was a 1.6 fold excess risk of developing lung cancer for carriers of the FAS –1377AA genotype (odds ratio (OR) 1.59, 95% confidence interval (CI) 1.21 to 2.10; p = 0.001), and 1.8 fold excess risk (OR 1.79, 95% CI 1.26 to 2.52; p = 0.001) for carriers of FASL –844CC. Gene–gene interaction of FAS and FASL polymorphisms increased risk of lung cancer in a multiplicative manner (OR for the carriers of both FAS –1377AA and FASL –844CC genotypes 4.18, 95% CI 2.83 to 6.18). Gene–environment interaction of FAS or FASL polymorphism and smoking associated with increased risk of lung cancer was also found.

Conclusion: These results are consistent with our initial findings in oesophageal cancer and further support the hypothesis that the FAS and FASL triggered apoptosis pathway plays an important role in human carcinogenesis.

Full Text

The Full Text of this article is available as a PDF (92.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. W., O'Connell J., O'Sullivan G. C., Brady C., Roche D., Collins J. K., Shanahan F. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol. 1998 Jun 1;160(11):5669–5675. [PubMed] [Google Scholar]
  2. Bernstorff Wolfram V., Glickman Jonathan N., Odze Robert D., Farraye Francis A., Joo Hong G., Goedegebuure Peter S., Eberlein Timothy J. Fas (CD95/APO-1) and Fas ligand expression in normal pancreas and pancreatic tumors. Implications for immune privilege and immune escape. Cancer. 2002 May 15;94(10):2552–2560. doi: 10.1002/cncr.10549. [DOI] [PubMed] [Google Scholar]
  3. Bijl M., Horst G., Limburg P. C., Kallenberg C. G. Effects of smoking on activation markers, Fas expression and apoptosis of peripheral blood lymphocytes. Eur J Clin Invest. 2001 Jun;31(6):550–553. doi: 10.1046/j.1365-2362.2001.00842.x. [DOI] [PubMed] [Google Scholar]
  4. Chen Z. M., Xu Z., Collins R., Li W. X., Peto R. Early health effects of the emerging tobacco epidemic in China. A 16-year prospective study. JAMA. 1997 Nov 12;278(18):1500–1504. doi: 10.1001/jama.278.18.1500. [DOI] [PubMed] [Google Scholar]
  5. Davidson W. F., Giese T., Fredrickson T. N. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions. J Exp Med. 1998 Jun 1;187(11):1825–1838. doi: 10.1084/jem.187.11.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evan G. I., Vousden K. H. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001 May 17;411(6835):342–348. doi: 10.1038/35077213. [DOI] [PubMed] [Google Scholar]
  7. Gastman B. R., Atarshi Y., Reichert T. E., Saito T., Balkir L., Rabinowich H., Whiteside T. L. Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res. 1999 Oct 15;59(20):5356–5364. [PubMed] [Google Scholar]
  8. Gratas C., Tohma Y., Barnas C., Taniere P., Hainaut P., Ohgaki H. Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res. 1998 May 15;58(10):2057–2062. [PubMed] [Google Scholar]
  9. Griffith T. S., Ferguson T. A. The role of FasL-induced apoptosis in immune privilege. Immunol Today. 1997 May;18(5):240–244. doi: 10.1016/s0167-5699(97)81663-5. [DOI] [PubMed] [Google Scholar]
  10. Huang Q. R., Morris D., Manolios N. Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 1997 Jun;34(8-9):577–582. doi: 10.1016/s0161-5890(97)00081-3. [DOI] [PubMed] [Google Scholar]
  11. Igney Frederik H., Krammer Peter H. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002 Jun;71(6):907–920. [PubMed] [Google Scholar]
  12. Kleinerman R, Wang Z, Lubin J, Zhang S, Metayer C, Brenner A. Lung cancer and indoor air pollution in rural china. Ann Epidemiol. 2000 Oct 1;10(7):469–469. doi: 10.1016/s1047-2797(00)00086-7. [DOI] [PubMed] [Google Scholar]
  13. Koyama S., Koike N., Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol. 2001 Jan;127(1):20–26. doi: 10.1007/s004320000181. [DOI] [PubMed] [Google Scholar]
  14. Koyama S., Koike N., Adachi S. Fas receptor counterattack against tumor-infiltrating lymphocytes in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol. 2001 Jan;127(1):20–26. doi: 10.1007/s004320000181. [DOI] [PubMed] [Google Scholar]
  15. Krammer P. H. CD95's deadly mission in the immune system. Nature. 2000 Oct 12;407(6805):789–795. doi: 10.1038/35037728. [DOI] [PubMed] [Google Scholar]
  16. Lai Hung-Cheng, Sytwu Huey-Kang, Sun Chien-An, Yu Mu-Hsien, Yu Cheng-Ping, Liu Hang-Seng, Chang Cheng-Chang, Chu Tang-Yuan. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer. 2003 Jan 10;103(2):221–225. doi: 10.1002/ijc.10800. [DOI] [PubMed] [Google Scholar]
  17. Lee S. H., Shin M. S., Park W. S., Kim S. Y., Dong S. M., Pi J. H., Lee H. K., Kim H. S., Jang J. J., Kim C. S. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res. 1999 Jul 1;59(13):3068–3072. [PubMed] [Google Scholar]
  18. Lee S. H., Shin M. S., Park W. S., Kim S. Y., Dong S. M., Pi J. H., Lee H. K., Kim H. S., Jang J. J., Kim C. S. Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res. 1999 Jul 1;59(13):3068–3072. [PubMed] [Google Scholar]
  19. Lee S. H., Shin M. S., Park W. S., Kim S. Y., Kim H. S., Han J. Y., Park G. S., Dong S. M., Pi J. H., Kim C. S. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene. 1999 Jun 24;18(25):3754–3760. doi: 10.1038/sj.onc.1202769. [DOI] [PubMed] [Google Scholar]
  20. Lee S. H., Shin M. S., Park W. S., Kim S. Y., Kim H. S., Han J. Y., Park G. S., Dong S. M., Pi J. H., Kim C. S. Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene. 1999 Jun 24;18(25):3754–3760. doi: 10.1038/sj.onc.1202769. [DOI] [PubMed] [Google Scholar]
  21. Liang Gang, Xing Deyin, Miao Xiaoping, Tan Wen, Yu Chunyuan, Lu Wenfu, Lin Dongxin. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer. 2003 Jul 10;105(5):669–673. doi: 10.1002/ijc.11136. [DOI] [PubMed] [Google Scholar]
  22. Liu B. Q., Peto R., Chen Z. M., Boreham J., Wu Y. P., Li J. Y., Campbell T. C., Chen J. S. Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. BMJ. 1998 Nov 21;317(7170):1411–1422. doi: 10.1136/bmj.317.7170.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lowe S. W., Lin A. W. Apoptosis in cancer. Carcinogenesis. 2000 Mar;21(3):485–495. doi: 10.1093/carcin/21.3.485. [DOI] [PubMed] [Google Scholar]
  24. Metayer Catherine, Wang Zuoyuan, Kleinerman Ruth A., Wang Longde, Brenner Alina V., Cui Hongxing, Cao Jisheng, Lubin Jay H. Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer. 2002 Feb;35(2):111–117. doi: 10.1016/s0169-5002(01)00412-3. [DOI] [PubMed] [Google Scholar]
  25. Müschen M., Warskulat U., Beckmann M. W. Defining CD95 as a tumor suppressor gene. J Mol Med (Berl) 2000;78(6):312–325. doi: 10.1007/s001090000112. [DOI] [PubMed] [Google Scholar]
  26. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  27. Niehans G. A., Brunner T., Frizelle S. P., Liston J. C., Salerno C. T., Knapp D. J., Green D. R., Kratzke R. A. Human lung carcinomas express Fas ligand. Cancer Res. 1997 Mar 15;57(6):1007–1012. [PubMed] [Google Scholar]
  28. O'Connell J., O'Sullivan G. C., Collins J. K., Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996 Sep 1;184(3):1075–1082. doi: 10.1084/jem.184.3.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peters A. M., Kohfink B., Martin H., Griesinger F., Wörmann B., Gahr M., Roesler J. Defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T-cell lymphoma, and Hodgkin's disease. Exp Hematol. 1999 May;27(5):868–874. doi: 10.1016/s0301-472x(99)00033-8. [DOI] [PubMed] [Google Scholar]
  30. Pugh B. F., Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990 Jun 29;61(7):1187–1197. doi: 10.1016/0092-8674(90)90683-6. [DOI] [PubMed] [Google Scholar]
  31. Sibley Kathryn, Rollinson Sara, Allan James M., Smith Alexandra G., Law Graham R., Roddam Philippa L., Skibola Christine F., Smith Martyn T., Morgan Gareth J. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003 Aug 1;63(15):4327–4330. [PubMed] [Google Scholar]
  32. Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. doi: 10.1016/0092-8674(93)90326-l. [DOI] [PubMed] [Google Scholar]
  33. Sun Tong, Miao Xiaoping, Zhang Xuemei, Tan Wen, Xiong Ping, Lin Dongxin. Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst. 2004 Jul 7;96(13):1030–1036. doi: 10.1093/jnci/djh187. [DOI] [PubMed] [Google Scholar]
  34. Suzuki N., Wakisaka S., Takeba Y., Mihara S., Sakane T. Effects of cigarette smoking on Fas/Fas ligand expression of human lymphocytes. Cell Immunol. 1999 Feb 25;192(1):48–53. doi: 10.1006/cimm.1998.1432. [DOI] [PubMed] [Google Scholar]
  35. Takahashi T., Tanaka M., Brannan C. I., Jenkins N. A., Copeland N. G., Suda T., Nagata S. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 1994 Mar 25;76(6):969–976. doi: 10.1016/0092-8674(94)90375-1. [DOI] [PubMed] [Google Scholar]
  36. Viard-Leveugle Isabelle, Veyrenc Sylvie, French Lars E., Brambilla Christian, Brambilla Elisabeth. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma. J Pathol. 2003 Oct;201(2):268–277. doi: 10.1002/path.1428. [DOI] [PubMed] [Google Scholar]
  37. Wang Li-E, Cheng Lie, Spitz Margaret R., Wei Qingyi. Fas A670G polymorphism, apoptotic capacity in lymphocyte cultures, and risk of lung cancer. Lung Cancer. 2003 Oct;42(1):1–8. doi: 10.1016/s0169-5002(03)00276-9. [DOI] [PubMed] [Google Scholar]
  38. Wu Jianming, Metz Christine, Xu Xiulong, Abe Riichiro, Gibson Andrew W., Edberg Jeffrey C., Cooke Jennifer, Xie Fenglong, Cooper Glinda S., Kimberly Robert P. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol. 2003 Jan 1;170(1):132–138. doi: 10.4049/jimmunol.170.1.132. [DOI] [PubMed] [Google Scholar]
  39. Yang Ling, Parkin Donald M., Li Liandi, Chen Yude. Time trends in cancer mortality in China: 1987-1999. Int J Cancer. 2003 Sep 20;106(5):771–783. doi: 10.1002/ijc.11300. [DOI] [PubMed] [Google Scholar]
  40. von Bernstorff W., Spanjaard R. A., Chan A. K., Lockhart D. C., Sadanaga N., Wood I., Peiper M., Goedegebuure P. S., Eberlein T. J. Pancreatic cancer cells can evade immune surveillance via nonfunctional Fas (APO-1/CD95) receptors and aberrant expression of functional Fas ligand. Surgery. 1999 Jan;125(1):73–84. doi: 10.1067/msy.2099.93570. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES