Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Jun;42(6):449–463. doi: 10.1136/jmg.2004.026187

Genetics of familial intrahepatic cholestasis syndromes

S W C van Mil 1, R Houwen 1, L Klomp 1
PMCID: PMC1736078  PMID: 15937079

Abstract

Bile acids and bile salts have essential functions in the liver and in the small intestine. Their synthesis in the liver provides a metabolic pathway for the catabolism of cholesterol and their detergent properties promote the solubilisation of essential nutrients and vitamins in the small intestine. Inherited conditions that prevent the synthesis of bile acids or their excretion cause cholestasis, or impaired bile flow. These disorders generally lead to severe human liver disease, underscoring the essential role of bile acids in metabolism. Recent advances in the elucidation of gene defects underlying familial cholestasis syndromes has greatly increased knowledge about the process of bile flow. The expression of key proteins involved in bile flow is tightly regulated by transcription factors of the nuclear hormone receptor family, which function as sensors of bile acids and cholesterol. Here we review the genetics of familial cholestasis disorders, the functions of the affected genes in bile flow, and their regulation by bile acids and cholesterol.

Full Text

The Full Text of this article is available as a PDF (234.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aagenaes O. Hereditary cholestasis with lymphoedema (Aagenaes syndrome, cholestasis-lymphoedema syndrome). New cases and follow-up from infancy to adult age. Scand J Gastroenterol. 1998 Apr;33(4):335–345. doi: 10.1080/00365529850170955. [DOI] [PubMed] [Google Scholar]
  2. Alpini G., Glaser S. S., Rodgers R., Phinizy J. L., Robertson W. E., Lasater J., Caligiuri A., Tretjak Z., LeSage G. D. Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology. 1997 Nov;113(5):1734–1740. doi: 10.1053/gast.1997.v113.pm9352879. [DOI] [PubMed] [Google Scholar]
  3. Ananthanarayanan M., Balasubramanian N., Makishima M., Mangelsdorf D. J., Suchy F. J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem. 2001 May 31;276(31):28857–28865. doi: 10.1074/jbc.M011610200. [DOI] [PubMed] [Google Scholar]
  4. Bacq Y., Myara A., Brechot M. C., Hamon C., Studer E., Trivin F., Metman E. H. Serum conjugated bile acid profile during intrahepatic cholestasis of pregnancy. J Hepatol. 1995 Jan;22(1):66–70. doi: 10.1016/0168-8278(95)80261-4. [DOI] [PubMed] [Google Scholar]
  5. Beil U., Crouse J. R., Einarsson K., Grundy S. M. Effects of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides. Metabolism. 1982 May;31(5):438–444. doi: 10.1016/0026-0495(82)90231-1. [DOI] [PubMed] [Google Scholar]
  6. Buchmann M. S., Kvittingen E. A., Nazer H., Gunasekaran T., Clayton P. T., Sjövall J., Björkhem I. Lack of 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase/isomerase in fibroblasts from a child with urinary excretion of 3 beta-hydroxy-delta 5-bile acids. A new inborn error of metabolism. J Clin Invest. 1990 Dec;86(6):2034–2037. doi: 10.1172/JCI114939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bull L. N., Roche E., Song E. J., Pedersen J., Knisely A. S., van Der Hagen C. B., Eiklid K., Aagenaes O., Freimer N. B. Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-cM interval on chromosome 15q. Am J Hum Genet. 2000 Aug 30;67(4):994–999. doi: 10.1086/303080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Byrne Jane A., Strautnieks Sandra S., Mieli-Vergani Giorgina, Higgins Christopher F., Linton Kenneth J., Thompson Richard J. The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology. 2002 Nov;123(5):1649–1658. doi: 10.1053/gast.2002.36591. [DOI] [PubMed] [Google Scholar]
  9. Bétard C., Rasquin-Weber A., Brewer C., Drouin E., Clark S., Verner A., Darmond-Zwaig C., Fortin J., Mercier J., Chagnon P. Localization of a recessive gene for North American Indian childhood cirrhosis to chromosome region 16q22-and identification of a shared haplotype. Am J Hum Genet. 2000 May 11;67(1):222–228. doi: 10.1086/302993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carey M. C., Small D. M. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 1978 Apr;61(4):998–1026. doi: 10.1172/JCI109025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carlton Victoria E. H., Harris Baruch Z., Puffenberger Erik G., Batta A. K., Knisely A. S., Robinson Donna L., Strauss Kevin A., Shneider Benjamin L., Lim Wendell A., Salen Gerald. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003 May;34(1):91–96. doi: 10.1038/ng1147. [DOI] [PubMed] [Google Scholar]
  12. Chagnon Pierre, Michaud Jacques, Mitchell Grant, Mercier Jocelyne, Marion Jean-François, Drouin Eric, Rasquin-Weber Andrée, Hudson Thomas J., Richter Andrea. A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet. 2002 Nov 4;71(6):1443–1449. doi: 10.1086/344580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Charbonneau A., Luu-The V. Assignment of steroid 5beta-reductase (SRD5B1) and its pseudogene (SRD5BP1) to human chromosome bands 7q32-->q33 and 1q23-->q25, respectively, by in situ hybridization. Cytogenet Cell Genet. 1999;84(1-2):105–106. doi: 10.1159/000015230. [DOI] [PubMed] [Google Scholar]
  14. Chawla A., Repa J. J., Evans R. M., Mangelsdorf D. J. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001 Nov 30;294(5548):1866–1870. doi: 10.1126/science.294.5548.1866. [DOI] [PubMed] [Google Scholar]
  15. Chen Frank, Ananthanarayanan M., Emre Sukru, Neimark Ezequiel, Bull Laura N., Knisely A. S., Strautnieks Sandra S., Thompson Richard J., Magid Margret S., Gordon Ronald. Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology. 2004 Mar;126(3):756–764. doi: 10.1053/j.gastro.2003.12.013. [DOI] [PubMed] [Google Scholar]
  16. Chen Huey-Ling, Chang Pei-Shin, Hsu Hey-Chi, Ni Yen-Hsuan, Hsu Hong-Yuan, Lee Jyh-Hong, Jeng Yung-Ming, Shau Wen-Yi, Chang Mei-Hwei. FIC1 and BSEP defects in Taiwanese patients with chronic intrahepatic cholestasis with low gamma-glutamyltranspeptidase levels. J Pediatr. 2002 Jan;140(1):119–124. doi: 10.1067/mpd.2002.119993. [DOI] [PubMed] [Google Scholar]
  17. Chiang John Y. L. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev. 2002 Aug;23(4):443–463. doi: 10.1210/er.2000-0035. [DOI] [PubMed] [Google Scholar]
  18. Clayton P. T., Leonard J. V., Lawson A. M., Setchell K. D., Andersson S., Egestad B., Sjövall J. Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alpha-dihydroxy-and 3 beta,7 alpha, 12 alpha-trihydroxy-5-cholenoic acids. J Clin Invest. 1987 Apr;79(4):1031–1038. doi: 10.1172/JCI112915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Clayton R. J., Iber F. L., Ruebner B. H., McKusick V. A. Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child. 1969 Jan;117(1):112–124. [PubMed] [Google Scholar]
  20. Coleman R. A., Van Hove J. L., Morris C. R., Rhoads J. M., Summar M. L. Cerebral defects and nephrogenic diabetes insipidus with the ARC syndrome: additional findings or a new syndrome (ARCC-NDI)? Am J Med Genet. 1997 Oct 31;72(3):335–338. [PubMed] [Google Scholar]
  21. Crocenzi Fernando A., Mottino Aldo D., Cao Jingsong, Veggi Luis M., Pozzi Enrique J. Sánchez, Vore Mary, Coleman Roger, Roma Marcelo G. Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol. 2003 Apr 17;285(2):G449–G459. doi: 10.1152/ajpgi.00508.2002. [DOI] [PubMed] [Google Scholar]
  22. Deleuze J. F., Jacquemin E., Dubuisson C., Cresteil D., Dumont M., Erlinger S., Bernard O., Hadchouel M. Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology. 1996 Apr;23(4):904–908. doi: 10.1002/hep.510230435. [DOI] [PubMed] [Google Scholar]
  23. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  24. Denson L. A., Sturm E., Echevarria W., Zimmerman T. L., Makishima M., Mangelsdorf D. J., Karpen S. J. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology. 2001 Jul;121(1):140–147. doi: 10.1053/gast.2001.25503. [DOI] [PubMed] [Google Scholar]
  25. Di Rocco M., Reboa E., Barabino A., Larnaout A., Canepa M., Savioli C., Cremonte M., Borrone C. Arthrogryposis, cholestatic pigmentary liver disease and renal dysfunction: report of a second family. Am J Med Genet. 1990 Oct;37(2):237–240. doi: 10.1002/ajmg.1320370214. [DOI] [PubMed] [Google Scholar]
  26. Dixon P. H., Weerasekera N., Linton K. J., Donaldson O., Chambers J., Egginton E., Weaver J., Nelson-Piercy C., de Swiet M., Warnes G. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet. 2000 May 1;9(8):1209–1217. doi: 10.1093/hmg/9.8.1209. [DOI] [PubMed] [Google Scholar]
  27. Drouin E., Russo P., Tuchweber B., Mitchell G., Rasquin-Weber A. North American Indian cirrhosis in children: a review of 30 cases. J Pediatr Gastroenterol Nutr. 2000 Oct;31(4):395–404. doi: 10.1097/00005176-200010000-00013. [DOI] [PubMed] [Google Scholar]
  28. Eastham K. M., McKiernan P. J., Milford D. V., Ramani P., Wyllie J., van't Hoff W., Lynch S. A., Morris A. A. ARC syndrome: an expanding range of phenotypes. Arch Dis Child. 2001 Nov;85(5):415–420. doi: 10.1136/adc.85.5.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Egawa Hiroto, Yorifuji Tohru, Sumazaki Ryo, Kimura Akihiko, Hasegawa Makoto, Tanaka Koichi. Intractable diarrhea after liver transplantation for Byler's disease: successful treatment with bile adsorptive resin. Liver Transpl. 2002 Aug;8(8):714–716. doi: 10.1053/jlts.2002.34384. [DOI] [PubMed] [Google Scholar]
  30. Eiberg H., Nielsen I. M. Linkage of Cholestasis Familiaris Groenlandica/Byler-like disease to chromosome 18. Int J Circumpolar Health. 2000 Jan;59(1):57–62. [PubMed] [Google Scholar]
  31. Eppens E. F., van Mil S. W., de Vree J. M., Mok K. S., Juijn J. A., Oude Elferink R. P., Berger R., Houwen R. H., Klomp L. W. FIC1, the protein affected in two forms of hereditary cholestasis, is localized in the cholangiocyte and the canalicular membrane of the hepatocyte. J Hepatol. 2001 Oct;35(4):436–443. doi: 10.1016/s0168-8278(01)00158-1. [DOI] [PubMed] [Google Scholar]
  32. Ferdinandusse S., Denis S., Clayton P. T., Graham A., Rees J. E., Allen J. T., McLean B. N., Brown A. Y., Vreken P., Waterham H. R. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet. 2000 Feb;24(2):188–191. doi: 10.1038/72861. [DOI] [PubMed] [Google Scholar]
  33. Floreani A., Molaro M., Mottes M., Sangalli A., Baragiotta A., Roda A., Naccarato R., Clementi M. Autosomal dominant benign recurrent intrahepatic cholestasis (BRIC) unlinked to 18q21 and 2q24. Am J Med Genet. 2000 Dec 18;95(5):450–453. doi: 10.1002/1096-8628(20001218)95:5<450::aid-ajmg8>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  34. Frühwirth Martin, Janecke Andreas R., Müller Thomas, Carlton Victoria E. H., Kronenberg Florian, Offner Felix, Knisely A. S., Geleff Silvana, Song Eyun J., Simma Burkhard. Evidence for genetic heterogeneity in lymphedema-cholestasis syndrome. J Pediatr. 2003 Apr;142(4):441–447. doi: 10.1067/mpd.2003.148. [DOI] [PubMed] [Google Scholar]
  35. Gascon-Barré Marielle, Demers Christian, Mirshahi Ali, Néron Stéphane, Zalzal Sylvia, Nanci Antonio. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology. 2003 May;37(5):1034–1042. doi: 10.1053/jhep.2003.50176. [DOI] [PubMed] [Google Scholar]
  36. Geier Andreas, Dietrich Christoph G., Gerloff Thomas, Haendly Jenny, Kullak-Ublick Gerd A., Stieger Bruno, Meier Peter J., Matern Siegfried, Gartung Carsten. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta. 2003 Jan 10;1609(1):87–94. doi: 10.1016/s0005-2736(02)00657-0. [DOI] [PubMed] [Google Scholar]
  37. Gerloff T., Stieger B., Hagenbuch B., Madon J., Landmann L., Roth J., Hofmann A. F., Meier P. J. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998 Apr 17;273(16):10046–10050. doi: 10.1074/jbc.273.16.10046. [DOI] [PubMed] [Google Scholar]
  38. Gissen Paul, Johnson Colin A., Morgan Neil V., Stapelbroek Janneke M., Forshew Tim, Cooper Wendy N., McKiernan Patrick J., Klomp Leo W. J., Morris Andrew A. M., Wraith James E. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 2004 Mar 28;36(4):400–404. doi: 10.1038/ng1325. [DOI] [PubMed] [Google Scholar]
  39. Goodwin B., Jones S. A., Price R. R., Watson M. A., McKee D. D., Moore L. B., Galardi C., Wilson J. G., Lewis M. C., Roth M. E. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000 Sep;6(3):517–526. doi: 10.1016/s1097-2765(00)00051-4. [DOI] [PubMed] [Google Scholar]
  40. Goodwin Bryan, Watson Michael A., Kim Hwajin, Miao Ji, Kemper Jongsook Kim, Kliewer Steven A. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha. Mol Endocrinol. 2002 Dec 12;17(3):386–394. doi: 10.1210/me.2002-0246. [DOI] [PubMed] [Google Scholar]
  41. Gould S. J., Valle D. Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 2000 Aug;16(8):340–345. doi: 10.1016/s0168-9525(00)02056-4. [DOI] [PubMed] [Google Scholar]
  42. Green R. M., Hoda F., Ward K. L. Molecular cloning and characterization of the murine bile salt export pump. Gene. 2000 Jan 4;241(1):117–123. doi: 10.1016/s0378-1119(99)00460-6. [DOI] [PubMed] [Google Scholar]
  43. Grober J., Zaghini I., Fujii H., Jones S. A., Kliewer S. A., Willson T. M., Ono T., Besnard P. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem. 1999 Oct 15;274(42):29749–29754. doi: 10.1074/jbc.274.42.29749. [DOI] [PubMed] [Google Scholar]
  44. Hanson R. F., Isenberg J. N., Williams G. C., Hachey D., Szczepanik P., Klein P. D., Sharp H. L. The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. J Clin Invest. 1975 Sep;56(3):577–587. doi: 10.1172/JCI108127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hofmann A. F. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999 Dec 13;159(22):2647–2658. doi: 10.1001/archinte.159.22.2647. [DOI] [PubMed] [Google Scholar]
  46. Hofmann Alan F. Bile Acids: The Good, the Bad, and the Ugly. News Physiol Sci. 1999 Feb;14(NaN):24–29. doi: 10.1152/physiologyonline.1999.14.1.24. [DOI] [PubMed] [Google Scholar]
  47. Horslen S. P., Lawson A. M., Malone M., Clayton P. T. 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency; effect of chenodeoxycholic acid therapy on liver histology. J Inherit Metab Dis. 1992;15(1):38–46. doi: 10.1007/BF01800342. [DOI] [PubMed] [Google Scholar]
  48. Houwen R. H., Baharloo S., Blankenship K., Raeymaekers P., Juyn J., Sandkuijl L. A., Freimer N. B. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat Genet. 1994 Dec;8(4):380–386. doi: 10.1038/ng1294-380. [DOI] [PubMed] [Google Scholar]
  49. Hua Zhaolin, Fatheddin Parvin, Graham Todd R. An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell. 2002 Sep;13(9):3162–3177. doi: 10.1091/mbc.E02-03-0172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ichimiya H., Egestad B., Nazer H., Baginski E. S., Clayton P. T., Sjövall J. Bile acids and bile alcohols in a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J Lipid Res. 1991 May;32(5):829–841. [PubMed] [Google Scholar]
  51. Ishibashi S., Schwarz M., Frykman P. K., Herz J., Russell D. W. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem. 1996 Jul 26;271(30):18017–18023. doi: 10.1074/jbc.271.30.18017. [DOI] [PubMed] [Google Scholar]
  52. Jacquemin E., Cresteil D., Manouvrier S., Boute O., Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet. 1999 Jan 16;353(9148):210–211. doi: 10.1016/S0140-6736(05)77221-4. [DOI] [PubMed] [Google Scholar]
  53. Jacquemin E., De Vree J. M., Cresteil D., Sokal E. M., Sturm E., Dumont M., Scheffer G. L., Paul M., Burdelski M., Bosma P. J. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 2001 May;120(6):1448–1458. doi: 10.1053/gast.2001.23984. [DOI] [PubMed] [Google Scholar]
  54. Jacquemin E. Progressive familial intrahepatic cholestasis. Genetic basis and treatment. Clin Liver Dis. 2000 Nov;4(4):753–763. doi: 10.1016/s1089-3261(05)70139-2. [DOI] [PubMed] [Google Scholar]
  55. Jansen P. L., Müller M., Sturm E. Genes and cholestasis. Hepatology. 2001 Dec;34(6):1067–1074. doi: 10.1053/jhep.2001.29625. [DOI] [PubMed] [Google Scholar]
  56. Jansen P. L., Strautnieks S. S., Jacquemin E., Hadchouel M., Sokal E. M., Hooiveld G. J., Koning J. H., De Jager-Krikken A., Kuipers F., Stellaard F. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology. 1999 Dec;117(6):1370–1379. doi: 10.1016/s0016-5085(99)70287-8. [DOI] [PubMed] [Google Scholar]
  57. Jesaitis L. A., Goodenough D. A. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol. 1994 Mar;124(6):949–961. doi: 10.1083/jcb.124.6.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kast H. R., Nguyen C. M., Sinal C. J., Jones S. A., Laffitte B. A., Reue K., Gonzalez F. J., Willson T. M., Edwards P. A. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 2001 Oct;15(10):1720–1728. doi: 10.1210/mend.15.10.0712. [DOI] [PubMed] [Google Scholar]
  59. Klomp L. W., Bull L. N., Knisely A. S., van Der Doelen M. A., Juijn J. A., Berger R., Forget S., Nielsen I. M., Eiberg H., Houwen R. H. A missense mutation in FIC1 is associated with greenland familial cholestasis. Hepatology. 2000 Dec;32(6):1337–1341. doi: 10.1053/jhep.2000.20520. [DOI] [PubMed] [Google Scholar]
  60. Klomp Leo W. J., Vargas Julie C., van Mil Saskia W. C., Pawlikowska Ludmila, Strautnieks Sandra S., van Eijk Michiel J. T., Juijn Jenneke A., Pabón-Peña Carlos, Smith Lauren B., DeYoung Joseph A. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology. 2004 Jul;40(1):27–38. doi: 10.1002/hep.20285. [DOI] [PubMed] [Google Scholar]
  61. Knisely A. S. Progressive familial intrahepatic cholestasis: a personal perspective. Pediatr Dev Pathol. 2000 Mar-Apr;3(2):113–125. doi: 10.1007/s100240050016. [DOI] [PubMed] [Google Scholar]
  62. Kondo K. H., Kai M. H., Setoguchi Y., Eggertsen G., Sjöblom P., Setoguchi T., Okuda K. I., Björkhem I. Cloning and expression of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme. Eur J Biochem. 1994 Jan 15;219(1-2):357–363. doi: 10.1111/j.1432-1033.1994.tb19947.x. [DOI] [PubMed] [Google Scholar]
  63. Kreek M. J. Female sex steroids and cholestasis. Semin Liver Dis. 1987 Feb;7(1):8–23. doi: 10.1055/s-2008-1040559. [DOI] [PubMed] [Google Scholar]
  64. Laatikainen T., Ikonen E. Fetal prognosis in obstetric hepatosis. Ann Chir Gynaecol Fenn. 1975;64(3):155–164. [PubMed] [Google Scholar]
  65. Laatikainen T., Tulenheimo A. Maternal serum bile acid levels and fetal distress in cholestasis of pregnancy. Int J Gynaecol Obstet. 1984 Apr;22(2):91–94. doi: 10.1016/0020-7292(84)90019-5. [DOI] [PubMed] [Google Scholar]
  66. Laffitte B. A., Kast H. R., Nguyen C. M., Zavacki A. M., Moore D. D., Edwards P. A. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem. 2000 Apr 7;275(14):10638–10647. doi: 10.1074/jbc.275.14.10638. [DOI] [PubMed] [Google Scholar]
  67. Lammert F., Marschall H. U., Glantz A., Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol. 2000 Dec;33(6):1012–1021. doi: 10.1016/s0168-8278(00)80139-7. [DOI] [PubMed] [Google Scholar]
  68. Lazaridis K. N., Pham L., Tietz P., Marinelli R. A., deGroen P. C., Levine S., Dawson P. A., LaRusso N. F. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest. 1997 Dec 1;100(11):2714–2721. doi: 10.1172/JCI119816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Li-Hawkins J., Lund E. G., Turley S. D., Russell D. W. Disruption of the oxysterol 7alpha-hydroxylase gene in mice. J Biol Chem. 2000 Jun 2;275(22):16536–16542. doi: 10.1074/jbc.M001811200. [DOI] [PubMed] [Google Scholar]
  70. Li Y. C., Wang D. P., Chiang J. Y. Regulation of cholesterol 7 alpha-hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha-hydroxylase mRNA. J Biol Chem. 1990 Jul 15;265(20):12012–12019. [PubMed] [Google Scholar]
  71. Lu T. T., Makishima M., Repa J. J., Schoonjans K., Kerr T. A., Auwerx J., Mangelsdorf D. J. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 2000 Sep;6(3):507–515. doi: 10.1016/s1097-2765(00)00050-2. [DOI] [PubMed] [Google Scholar]
  72. Lykavieris Panayotis, van Mil Saskia, Cresteil Danièle, Fabre Monique, Hadchouel Michelle, Klomp Leo, Bernard Olivier, Jacquemin Emmanuel. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J Hepatol. 2003 Sep;39(3):447–452. doi: 10.1016/s0168-8278(03)00286-1. [DOI] [PubMed] [Google Scholar]
  73. Macias R. I., Pascual M. J., Bravo A., Alcalde M. P., Larena M. G., St-Pierre M. V., Serrano M. A., Marin J. J. Effect of maternal cholestasis on bile acid transfer across the rat placenta-maternal liver tandem. Hepatology. 2000 Apr;31(4):975–983. doi: 10.1053/he.2000.5921. [DOI] [PubMed] [Google Scholar]
  74. Makishima Makoto, Lu Timothy T., Xie Wen, Whitfield G. Kerr, Domoto Hideharu, Evans Ronald M., Haussler Mark R., Mangelsdorf David J. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002 May 17;296(5571):1313–1316. doi: 10.1126/science.1070477. [DOI] [PubMed] [Google Scholar]
  75. Mazzella G., Rizzo N., Azzaroli F., Simoni P., Bovicelli L., Miracolo A., Simonazzi G., Colecchia A., Nigro G., Mwangemi C. Ursodeoxycholic acid administration in patients with cholestasis of pregnancy: effects on primary bile acids in babies and mothers. Hepatology. 2001 Mar;33(3):504–508. doi: 10.1053/jhep.2001.22647. [DOI] [PubMed] [Google Scholar]
  76. McCarthy K. M., Francis S. A., McCormack J. M., Lai J., Rogers R. A., Skare I. B., Lynch R. D., Schneeberger E. E. Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J Cell Sci. 2000 Oct;113(Pt 19):3387–3398. doi: 10.1242/jcs.113.19.3387. [DOI] [PubMed] [Google Scholar]
  77. Mottino Aldo D., Cao Jingsong, Veggi Luis M., Crocenzi Fernando, Roma Marcelo G., Vore Mary. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-D-glucuronide-induced cholestasis. Hepatology. 2002 Jun;35(6):1409–1419. doi: 10.1053/jhep.2002.33327. [DOI] [PubMed] [Google Scholar]
  78. Nezelof C., Dupart M. C., Jaubert F., Eliachar E. A lethal familial syndrome associating arthrogryposis multiplex congenita, renal dysfunction, and a cholestatic and pigmentary liver disease. J Pediatr. 1979 Feb;94(2):258–260. doi: 10.1016/s0022-3476(79)80839-2. [DOI] [PubMed] [Google Scholar]
  79. Nielsen I. M., Ornvold K., Jacobsen B. B., Ranek L. Fatal familial cholestatic syndrome in Greenland Eskimo children. Acta Paediatr Scand. 1986 Nov;75(6):1010–1016. doi: 10.1111/j.1651-2227.1986.tb10332.x. [DOI] [PubMed] [Google Scholar]
  80. Noé Johannes, Stieger Bruno, Meier Peter J. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology. 2002 Nov;123(5):1659–1666. doi: 10.1053/gast.2002.36587. [DOI] [PubMed] [Google Scholar]
  81. Oelkers P., Kirby L. C., Heubi J. E., Dawson P. A. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest. 1997 Apr 15;99(8):1880–1887. doi: 10.1172/JCI119355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Paulusma C. C., Kothe M. J., Bakker C. T., Bosma P. J., van Bokhoven I., van Marle J., Bolder U., Tytgat G. N., Oude Elferink R. P. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology. 2000 Mar;31(3):684–693. doi: 10.1002/hep.510310319. [DOI] [PubMed] [Google Scholar]
  83. Pawlikowska Ludmila, Groen Annemiek, Eppens Elaine F., Kunne Cindy, Ottenhoff Roelof, Looije Norbert, Knisely A. S., Killeen Nigel P., Bull Laura N., Elferink Ronald P. J. Oude. A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Hum Mol Genet. 2004 Feb 19;13(8):881–892. doi: 10.1093/hmg/ddh100. [DOI] [PubMed] [Google Scholar]
  84. Peet D. J., Turley S. D., Ma W., Janowski B. A., Lobaccaro J. M., Hammer R. E., Mangelsdorf D. J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998 May 29;93(5):693–704. doi: 10.1016/s0092-8674(00)81432-4. [DOI] [PubMed] [Google Scholar]
  85. Plass Jacqueline R. M., Mol Olaf, Heegsma Janette, Geuken Mariska, de Bruin Joost, Elling Geeske, Müller Michael, Faber Klaas Nico, Jansen Peter L. M. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump. J Hepatol. 2004 Jan;40(1):24–30. doi: 10.1016/s0168-8278(03)00483-5. [DOI] [PubMed] [Google Scholar]
  86. Pomorski Thomas, Lombardi Ruben, Riezman Howard, Devaux Philippe F., van Meer Gerrit, Holthuis Joost C. M. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell. 2003 Mar;14(3):1240–1254. doi: 10.1091/mbc.E02-08-0501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Pullinger Clive R., Eng Celeste, Salen Gerald, Shefer Sarah, Batta Ashok K., Erickson Sandra K., Verhagen Andrea, Rivera Christopher R., Mulvihill Sean J., Malloy Mary J. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002 Jul;110(1):109–117. doi: 10.1172/JCI15387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Redinger Richard N. Nuclear receptors in cholesterol catabolism: molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J Lab Clin Med. 2003 Jul;142(1):7–20. doi: 10.1016/S0022-2143(03)00088-X. [DOI] [PubMed] [Google Scholar]
  89. Reyes H., Gonzalez M. C., Ribalta J., Aburto H., Matus C., Schramm G., Katz R., Medina E. Prevalence of intrahepatic cholestasis of pregnancy in Chile. Ann Intern Med. 1978 Apr;88(4):487–493. doi: 10.7326/0003-4819-88-4-487. [DOI] [PubMed] [Google Scholar]
  90. Reyes H., Sjövall J. Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med. 2000 Mar;32(2):94–106. doi: 10.3109/07853890009011758. [DOI] [PubMed] [Google Scholar]
  91. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  92. Russell David W. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003 Jan 16;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712. [DOI] [PubMed] [Google Scholar]
  93. SUMMERSKILL W. H., WALSHE J. M. Benign recurrent intrahepatic "obstructive" jaundice. Lancet. 1959 Oct 31;2(7105):686–690. doi: 10.1016/s0140-6736(59)92128-2. [DOI] [PubMed] [Google Scholar]
  94. Savander M., Ropponen A., Avela K., Weerasekera N., Cormand B., Hirvioja M-L, Riikonen S., Ylikorkala O., Lehesjoki A-E, Williamson C. Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut. 2003 Jul;52(7):1025–1029. doi: 10.1136/gut.52.7.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Sawada N., Sakaki T., Kitanaka S., Kato S., Inouye K. Structure-function analysis of CYP27B1 and CYP27A1. Studies on mutants from patients with vitamin D-dependent rickets type I (VDDR-I) and cerebrotendinous xanthomatosis (CTX). Eur J Biochem. 2001 Dec;268(24):6607–6615. doi: 10.1046/j.0014-2956.2001.02615.x. [DOI] [PubMed] [Google Scholar]
  96. Schwarz M., Wright A. C., Davis D. L., Nazer H., Björkhem I., Russell D. W. The bile acid synthetic gene 3beta-hydroxy-Delta(5)-C(27)-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J Clin Invest. 2000 Nov;106(9):1175–1184. doi: 10.1172/JCI10902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Schölmerich J., Becher M. S., Schmidt K., Schubert R., Kremer B., Feldhaus S., Gerok W. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties--studies on isolated hepatocytes and lipid membrane vesicles. Hepatology. 1984 Jul-Aug;4(4):661–666. doi: 10.1002/hep.1840040416. [DOI] [PubMed] [Google Scholar]
  98. Serrano M. A., Brites D., Larena M. G., Monte M. J., Bravo M. P., Oliveira N., Marin J. J. Beneficial effect of ursodeoxycholic acid on alterations induced by cholestasis of pregnancy in bile acid transport across the human placenta. J Hepatol. 1998 May;28(5):829–839. doi: 10.1016/s0168-8278(98)80234-1. [DOI] [PubMed] [Google Scholar]
  99. Setchell K. D., Schwarz M., O'Connell N. C., Lund E. G., Davis D. L., Lathe R., Thompson H. R., Weslie Tyson R., Sokol R. J., Russell D. W. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 1998 Nov 1;102(9):1690–1703. doi: 10.1172/JCI2962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Setchell K. D., Suchy F. J., Welsh M. B., Zimmer-Nechemias L., Heubi J., Balistreri W. F. Delta 4-3-oxosteroid 5 beta-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest. 1988 Dec;82(6):2148–2157. doi: 10.1172/JCI113837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Sharma M., Benharouga M., Hu W., Lukacs G. L. Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J Biol Chem. 2000 Dec 21;276(12):8942–8950. doi: 10.1074/jbc.M009172200. [DOI] [PubMed] [Google Scholar]
  102. Shneider B. L. Genetic cholestasis syndromes. J Pediatr Gastroenterol Nutr. 1999 Feb;28(2):124–131. doi: 10.1097/00005176-199902000-00005. [DOI] [PubMed] [Google Scholar]
  103. Siegmund A., Grant A., Angeletti C., Malone L., Nichols J. W., Rudolph H. K. Loss of Drs2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. J Biol Chem. 1998 Dec 18;273(51):34399–34405. doi: 10.1074/jbc.273.51.34399. [DOI] [PubMed] [Google Scholar]
  104. Sigstad H., Aagenaes O., Bjorn-Hansen R. W., Rootwelt K. Primary lymphoedema combined with hereditary recurrent intrahepatic cholestasis. Acta Med Scand. 1970 Sep;188(3):213–219. doi: 10.1111/j.0954-6820.1970.tb08028.x. [DOI] [PubMed] [Google Scholar]
  105. Simon F. R., Fortune J., Iwahashi M., Gartung C., Wolkoff A., Sutherland E. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol. 1996 Dec;271(6 Pt 1):G1043–G1052. doi: 10.1152/ajpgi.1996.271.6.G1043. [DOI] [PubMed] [Google Scholar]
  106. Sinal C. J., Tohkin M., Miyata M., Ward J. M., Lambert G., Gonzalez F. J. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000 Sep 15;102(6):731–744. doi: 10.1016/s0092-8674(00)00062-3. [DOI] [PubMed] [Google Scholar]
  107. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  108. Smith T. F., Gaitatzes C., Saxena K., Neer E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci. 1999 May;24(5):181–185. doi: 10.1016/s0968-0004(99)01384-5. [DOI] [PubMed] [Google Scholar]
  109. Staudinger J. L., Goodwin B., Jones S. A., Hawkins-Brown D., MacKenzie K. I., LaTour A., Liu Y., Klaassen C. D., Brown K. K., Reinhard J. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3369–3374. doi: 10.1073/pnas.051551698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Strautnieks S. S., Bull L. N., Knisely A. S., Kocoshis S. A., Dahl N., Arnell H., Sokal E., Dahan K., Childs S., Ling V. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998 Nov;20(3):233–238. doi: 10.1038/3034. [DOI] [PubMed] [Google Scholar]
  111. Strautnieks S. S., Kagalwalla A. F., Tanner M. S., Gardiner R. M., Thompson R. J. Locus heterogeneity in progressive familial intrahepatic cholestasis. J Med Genet. 1996 Oct;33(10):833–836. doi: 10.1136/jmg.33.10.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Strautnieks S. S., Kagalwalla A. F., Tanner M. S., Knisely A. S., Bull L., Freimer N., Kocoshis S. A., Gardiner R. M., Thompson R. J. Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet. 1997 Sep;61(3):630–633. doi: 10.1086/515501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Suzuki Y., Jiang L. L., Souri M., Miyazawa S., Fukuda S., Zhang Z., Une M., Shimozawa N., Kondo N., Orii T. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am J Hum Genet. 1997 Nov;61(5):1153–1162. doi: 10.1086/301599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Tang X., Halleck M. S., Schlegel R. A., Williamson P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 1996 Jun 7;272(5267):1495–1497. doi: 10.1126/science.272.5267.1495. [DOI] [PubMed] [Google Scholar]
  115. Thompson R., Strautnieks S. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis. 2001 Nov;21(4):545–550. doi: 10.1055/s-2001-19038. [DOI] [PubMed] [Google Scholar]
  116. Tygstrup N., Steig B. A., Juijn J. A., Bull L. N., Houwen R. H. Recurrent familial intrahepatic cholestasis in the Faeroe Islands. Phenotypic heterogeneity but genetic homogeneity. Hepatology. 1999 Feb;29(2):506–508. doi: 10.1002/hep.510290214. [DOI] [PubMed] [Google Scholar]
  117. Ujhazy P., Ortiz D., Misra S., Li S., Moseley J., Jones H., Arias I. M. Familial intrahepatic cholestasis 1: studies of localization and function. Hepatology. 2001 Oct;34(4 Pt 1):768–775. doi: 10.1053/jhep.2001.27663. [DOI] [PubMed] [Google Scholar]
  118. Une M., Konishi M., Suzuki Y., Akaboshi S., Yoshii M., Kuramoto T., Fujimura K. Bile acid profiles in a peroxisomal D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency. J Biochem. 1997 Sep;122(3):655–658. doi: 10.1093/oxfordjournals.jbchem.a021803. [DOI] [PubMed] [Google Scholar]
  119. Van Nieuwkerk C. M., Elferink R. P., Groen A. K., Ottenhoff R., Tytgat G. N., Dingemans K. P., Van Den Bergh Weerman M. A., Offerhaus G. J. Effects of Ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Gastroenterology. 1996 Jul;111(1):165–171. doi: 10.1053/gast.1996.v111.pm8698195. [DOI] [PubMed] [Google Scholar]
  120. Wang Lin, Soroka Carol J., Boyer James L. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J Clin Invest. 2002 Oct;110(7):965–972. doi: 10.1172/JCI15968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Wang R., Salem M., Yousef I. M., Tuchweber B., Lam P., Childs S. J., Helgason C. D., Ackerley C., Phillips M. J., Ling V. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A. 2001 Feb 6;98(4):2011–2016. doi: 10.1073/pnas.031465498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Watkins P. A., Chen W. W., Harris C. J., Hoefler G., Hoefler S., Blake D. C., Jr, Balfe A., Kelley R. I., Moser A. B., Beard M. E. Peroxisomal bifunctional enzyme deficiency. J Clin Invest. 1989 Mar;83(3):771–777. doi: 10.1172/JCI113956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Xie W., Radominska-Pandya A., Shi Y., Simon C. M., Nelson M. C., Ong E. S., Waxman D. J., Evans R. M. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3375–3380. doi: 10.1073/pnas.051014398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Ye S., Cole-Strauss A. C., Frank B., Kmiec E. B. Targeted gene correction: a new strategy for molecular medicine. Mol Med Today. 1998 Oct;4(10):431–437. doi: 10.1016/s1357-4310(98)01344-6. [DOI] [PubMed] [Google Scholar]
  125. Yu Jinghua, Lo Jane-L, Huang Li, Zhao Annie, Metzger Edward, Adams Alan, Meinke Peter T., Wright Samuel D., Cui Jisong. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem. 2002 Jun 6;277(35):31441–31447. doi: 10.1074/jbc.M200474200. [DOI] [PubMed] [Google Scholar]
  126. Zhu Qin-shi, Xing Wenxue, Qian Bin, von Dippe Patricia, Shneider Benjamin L., Fox Victor L., Levy Daniel. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochim Biophys Acta. 2003 Jul 30;1638(3):208–216. doi: 10.1016/s0925-4439(03)00085-1. [DOI] [PubMed] [Google Scholar]
  127. de Pagter A. G., van Berge Henegouwen G. P., ten Bokkel Huinink J. A., Brandt K. H. Familial benign recurrent intrahepatic cholestasis. Interrelation with intrahepatic cholestasis of pregnancy and from oral contraceptives? Gastroenterology. 1976 Aug;71(2):202–207. [PubMed] [Google Scholar]
  128. de Vree J. M., Jacquemin E., Sturm E., Cresteil D., Bosma P. J., Aten J., Deleuze J. F., Desrochers M., Burdelski M., Bernard O. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):282–287. doi: 10.1073/pnas.95.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. van Mil S. W., Klomp L. W., Bull L. N., Houwen R. H. FIC1 disease: a spectrum of intrahepatic cholestatic disorders. Semin Liver Dis. 2001 Nov;21(4):535–544. doi: 10.1055/s-2001-19034. [DOI] [PubMed] [Google Scholar]
  130. van Mil Saskia W. C., van Oort Masja M., van den Berg Inge E. T., Berger Ruud, Houwen Roderick H. J., Klomp Leo W. J. Fic1 is expressed at apical membranes of different epithelial cells in the digestive tract and is induced in the small intestine during postnatal development of mice. Pediatr Res. 2004 Oct 20;56(6):981–987. doi: 10.1203/01.PDR.0000145564.06791.D1. [DOI] [PubMed] [Google Scholar]
  131. van Mil Saskia W. C., van der Woerd Wendy L., van der Brugge Gerda, Sturm Ekkehard, Jansen Peter L. M., Bull Laura N., van den Berg Inge E. T., Berger Ruud, Houwen Roderick H. J., Klomp Leo W. J. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology. 2004 Aug;127(2):379–384. doi: 10.1053/j.gastro.2004.04.065. [DOI] [PubMed] [Google Scholar]
  132. van Ooteghem Nancy A. M., Klomp Leo W. J., van Berge-Henegouwen Gerard P., Houwen Roderick H. J. Benign recurrent intrahepatic cholestasis progressing to progressive familial intrahepatic cholestasis: low GGT cholestasis is a clinical continuum. J Hepatol. 2002 Mar;36(3):439–443. doi: 10.1016/s0168-8278(01)00299-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES