Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Aug;42(8):633–638. doi: 10.1136/jmg.2004.030049

Identification and characterization of missense alterations in the BRCA1 associated RING domain (BARD1) gene in breast and ovarian cancer

M Sauer 1, I Andrulis 1
PMCID: PMC1736120  PMID: 16061562

Abstract

Background: BRCA1 associated RING domain protein (BARD1) was originally identified due to its interaction with the RING domain of BRCA1. BARD1 is required for S phase progression, contact inhibition and normal nuclear division, as well as for BRCA1 independent, p53 dependent apoptosis.

Methods: To investigate whether alterations in BARD1 are involved in human breast and ovarian cancer, we used single strand conformation polymorphism analysis and sequencing on 35 breast tumours and cancer cell lines and on 21 ovarian tumours.

Results: Along with the G2355C (S761N) missense mutation previously identified in a uterine cancer, we found two other variants in breast cancers, T2006C (C645R) and A2286G (I738V). The T2006C (C645R) mutation was also found in one ovarian tumour. A variant of uncertain consequence, G1743C (C557S), was found to be homozygous or hemizygous in an ovarian tumour. Eleven variants of BARD1 were characterised with respect to known functions of BARD1. None of the variants appears to affect localisation or interaction with BRCA1; however, putative disease associated alleles appear to affect the stability of p53. These same mutations also appear to abrogate the growth suppressive and apoptotic activities of BARD1.

Conclusions: These activities allowed us to identify one of the rare variants (A2286G; I738V) as a neutral polymorphism rather than a detrimental mutation, and suggested that G1743C (C557S) is not a polymorphism but may contribute to the cancer phenotype.

Full Text

The Full Text of this article is available as a PDF (145.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrulis I. L., Bull S. B., Blackstein M. E., Sutherland D., Mak C., Sidlofsky S., Pritzker K. P., Hartwick R. W., Hanna W., Lickley L. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol. 1998 Apr;16(4):1340–1349. doi: 10.1200/JCO.1998.16.4.1340. [DOI] [PubMed] [Google Scholar]
  2. Baer Richard, Ludwig Thomas. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev. 2002 Feb;12(1):86–91. doi: 10.1016/s0959-437x(01)00269-6. [DOI] [PubMed] [Google Scholar]
  3. Brzovic P. S., Rajagopal P., Hoyt D. W., King M. C., Klevit R. E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol. 2001 Oct;8(10):833–837. doi: 10.1038/nsb1001-833. [DOI] [PubMed] [Google Scholar]
  4. Brzovic Peter S., Keeffe Jennifer R., Nishikawa Hiroyuki, Miyamoto Keiko, Fox David, 3rd, Fukuda Mamoru, Ohta Tomohiko, Klevit Rachel. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A. 2003 May 5;100(10):5646–5651. doi: 10.1073/pnas.0836054100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen Angus, Kleiman Frida E., Manley James L., Ouchi Toru, Pan Zhen-Qiang. Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J Biol Chem. 2002 Apr 1;277(24):22085–22092. doi: 10.1074/jbc.M201252200. [DOI] [PubMed] [Google Scholar]
  6. Dechend R., Hirano F., Lehmann K., Heissmeyer V., Ansieau S., Wulczyn F. G., Scheidereit C., Leutz A. The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene. 1999 Jun 3;18(22):3316–3323. doi: 10.1038/sj.onc.1202717. [DOI] [PubMed] [Google Scholar]
  7. Dong Yuanshu, Hakimi Mohamed-Ali, Chen Xiaowei, Kumaraswamy Easwari, Cooch Neil S., Godwin Andrew K., Shiekhattar Ramin. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell. 2003 Nov;12(5):1087–1099. doi: 10.1016/s1097-2765(03)00424-6. [DOI] [PubMed] [Google Scholar]
  8. Fabbro Megan, Savage Kienan, Hobson Karen, Deans Andrew J., Powell Simon N., McArthur Grant A., Khanna Kum Kum. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem. 2004 May 24;279(30):31251–31258. doi: 10.1074/jbc.M405372200. [DOI] [PubMed] [Google Scholar]
  9. Ghimenti Chiara, Sensi Elisa, Presciuttini Silvano, Brunetti Isa Maura, Conte PierFranco, Bevilacqua Generoso, Caligo Maria A. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer. 2002 Mar;33(3):235–242. doi: 10.1002/gcc.1223. [DOI] [PubMed] [Google Scholar]
  10. Hashizume R., Fukuda M., Maeda I., Nishikawa H., Oyake D., Yabuki Y., Ogata H., Ohta T. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem. 2001 Mar 6;276(18):14537–14540. doi: 10.1074/jbc.C000881200. [DOI] [PubMed] [Google Scholar]
  11. Irminger-Finger I., Leung W. C., Li J., Dubois-Dauphin M., Harb J., Feki A., Jefford C. E., Soriano J. V., Jaconi M., Montesano R. Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol Cell. 2001 Dec;8(6):1255–1266. doi: 10.1016/s1097-2765(01)00406-3. [DOI] [PubMed] [Google Scholar]
  12. Irminger-Finger I., Soriano J. V., Vaudan G., Montesano R., Sappino A. P. In vitro repression of Brca1-associated RING domain gene, Bard1, induces phenotypic changes in mammary epithelial cells. J Cell Biol. 1998 Nov 30;143(5):1329–1339. doi: 10.1083/jcb.143.5.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Irminger-Finger Irmgard, Leung Wai Choi. BRCA1-dependent and independent functions of BARD1. Int J Biochem Cell Biol. 2002 Jun;34(6):582–587. doi: 10.1016/s1357-2725(01)00161-3. [DOI] [PubMed] [Google Scholar]
  14. Ishitobi Makoto, Miyoshi Yasuo, Hasegawa Seiichi, Egawa Chiyomi, Tamaki Yasuhiro, Monden Morito, Noguchi Shinzaburo. Mutational analysis of BARD1 in familial breast cancer patients in Japan. Cancer Lett. 2003 Oct 8;200(1):1–7. doi: 10.1016/s0304-3835(03)00387-2. [DOI] [PubMed] [Google Scholar]
  15. Jefford Charles Edward, Feki Anis, Harb Jean, Krause Karl-Heinz, Irminger-Finger Irmgard. Nuclear-cytoplasmic translocation of BARD1 is linked to its apoptotic activity. Oncogene. 2004 Apr 29;23(20):3509–3520. doi: 10.1038/sj.onc.1207427. [DOI] [PubMed] [Google Scholar]
  16. Jin Y., Xu X. L., Yang M. C., Wei F., Ayi T. C., Bowcock A. M., Baer R. Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12075–12080. doi: 10.1073/pnas.94.22.12075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karppinen S-M, Heikkinen K., Rapakko K., Winqvist R. Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. J Med Genet. 2004 Sep;41(9):e114–e114. doi: 10.1136/jmg.2004.020669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kentsis Alex, Gordon Ronald E., Borden Katherine L. B. Control of biochemical reactions through supramolecular RING domain self-assembly. Proc Natl Acad Sci U S A. 2002 Nov 18;99(24):15404–15409. doi: 10.1073/pnas.202608799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kleiman F. E., Manley J. L. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science. 1999 Sep 3;285(5433):1576–1579. doi: 10.1126/science.285.5433.1576. [DOI] [PubMed] [Google Scholar]
  20. Kleiman F. E., Manley J. L. The BARD1-CstF-50 interaction links mRNA 3' end formation to DNA damage and tumor suppression. Cell. 2001 Mar 9;104(5):743–753. doi: 10.1016/s0092-8674(01)00270-7. [DOI] [PubMed] [Google Scholar]
  21. Laframboise S., Chapman W., McLaughlin J., Andrulis I. L. p53 mutations in epithelial ovarian cancers: possible role in predicting chemoresistance. Cancer J. 2000 Sep-Oct;6(5):302–308. [PubMed] [Google Scholar]
  22. Mallery Donna L., Vandenberg Cassandra J., Hiom Kevin. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 2002 Dec 16;21(24):6755–6762. doi: 10.1093/emboj/cdf691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meza J. E., Brzovic P. S., King M. C., Klevit R. E. Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J Biol Chem. 1999 Feb 26;274(9):5659–5665. doi: 10.1074/jbc.274.9.5659. [DOI] [PubMed] [Google Scholar]
  24. Morris Joanna R., Keep Nicholas H., Solomon Ellen. Identification of residues required for the interaction of BARD1 with BRCA1. J Biol Chem. 2001 Dec 31;277(11):9382–9386. doi: 10.1074/jbc.M109249200. [DOI] [PubMed] [Google Scholar]
  25. Morris Joanna R., Solomon Ellen. BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet. 2004 Feb 19;13(8):807–817. doi: 10.1093/hmg/ddh095. [DOI] [PubMed] [Google Scholar]
  26. Rodriguez José Antonio, Schüchner Stefan, Au Wendy W. Y., Fabbro Megan, Henderson Beric R. Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1. Oncogene. 2004 Mar 11;23(10):1809–1820. doi: 10.1038/sj.onc.1207302. [DOI] [PubMed] [Google Scholar]
  27. Ruffner H., Joazeiro C. A., Hemmati D., Hunter T., Verma I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5134–5139. doi: 10.1073/pnas.081068398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Soriano J. V., Irminger-Finger I., Uyttendaele H., Vaudan G., Kitajewski J., Sappino A. P., Montesano R. Repression of the putative tumor suppressor gene Bard1 or expression of Notch4(int-3) oncogene subvert the morphogenetic properties of mammary epithelial cells. Adv Exp Med Biol. 2000;480:175–184. doi: 10.1007/0-306-46832-8_22. [DOI] [PubMed] [Google Scholar]
  29. Spahn Laura, Petermann Robert, Siligan Christine, Schmid Johannes A., Aryee Dave N. T., Kovar Heinrich. Interaction of the EWS NH2 terminus with BARD1 links the Ewing's sarcoma gene to a common tumor suppressor pathway. Cancer Res. 2002 Aug 15;62(16):4583–4587. [PubMed] [Google Scholar]
  30. Thai T. H., Du F., Tsan J. T., Jin Y., Phung A., Spillman M. A., Massa H. F., Muller C. Y., Ashfaq R., Mathis J. M. Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet. 1998 Feb;7(2):195–202. doi: 10.1093/hmg/7.2.195. [DOI] [PubMed] [Google Scholar]
  31. Wu L. C., Wang Z. W., Tsan J. T., Spillman M. A., Phung A., Xu X. L., Yang M. C., Hwang L. Y., Bowcock A. M., Baer R. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet. 1996 Dec;14(4):430–440. doi: 10.1038/ng1296-430. [DOI] [PubMed] [Google Scholar]
  32. Xia Yan, Pao Gerald M., Chen Hong-Wu, Verma Inder M., Hunter Tony. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem. 2002 Nov 12;278(7):5255–5263. doi: 10.1074/jbc.M204591200. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Web-only figures]
[Web-only table]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES