Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Feb;66(2):137–147. doi: 10.1136/jnnp.66.2.137

The cholinergic hypothesis of Alzheimer's disease: a review of progress

P Francis 1, A Palmer 1, M Snape 1, G Wilcock 1
PMCID: PMC1736202  PMID: 10071091

Abstract

Alzheimer's disease is one of the most common causes of mental deterioration in elderly people, accounting for around 50%-60% of the overall cases of dementia among persons over 65 years of age. The past two decades have witnessed a considerable research effort directed towards discovering the cause of Alzheimer's disease with the ultimate hope of developing safe and effective pharmacological treatments. This article examines the existing scientific applicability of the original cholinergic hypothesis of Alzheimer's disease by describing the biochemical and histopathological changes of neurotransmitter markers that occur in the brains of patients with Alzheimer's disease both at postmortem and neurosurgical cerebral biopsy and the behavioural consequences of cholinomimetic drugs and cholinergic lesions. Such studies have resulted in the discovery of an association between a decline in learning and memory, and a deficit in excitatory amino acid (EAA) neurotransmission, together with important roles for the cholinergic system in attentional processing and as a modulator of EAA neurotransmission. Accordingly, although there is presently no "cure" for Alzheimer's disease, a large number of potential therapeutic interventions have emerged that are designed to correct loss of presynaptic cholinergic function. A few of these compounds have confirmed efficacy in delaying the deterioration of symptoms of Alzheimer's disease, a valuable treatment target considering the progressive nature of the disease. Indeed, three compounds have received European approval for the treatment of the cognitive symptoms of Alzheimer's disease, first tacrine and more recently, donepezil and rivastigmine, all of which are cholinesterase inhibitors.



Full Text

The Full Text of this article is available as a PDF (172.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. S., Grützner M., Stephens D. N. Effects of cholinergic and non-cholinergic drugs on visual discrimination and delayed visual discrimination performance in rats. Psychopharmacology (Berl) 1992;106(4):523–530. doi: 10.1007/BF02244825. [DOI] [PubMed] [Google Scholar]
  2. Baldwin H. A., De Souza R. J., Sarna G. S., Murray T. K., Green A. R., Cross A. J. Measurements of tacrine and monoamines in brain by in vivo microdialysis argue against release of monoamines by tacrine at therapeutic doses. Br J Pharmacol. 1991 Aug;103(4):1946–1950. doi: 10.1111/j.1476-5381.1991.tb12357.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  4. Bodick N. C., Offen W. W., Levey A. I., Cutler N. R., Gauthier S. G., Satlin A., Shannon H. E., Tollefson G. D., Rasmussen K., Bymaster F. P. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol. 1997 Apr;54(4):465–473. doi: 10.1001/archneur.1997.00550160091022. [DOI] [PubMed] [Google Scholar]
  5. Bowen D. M., Benton J. S., Spillane J. A., Smith C. C., Allen S. J. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci. 1982 Dec;57(2-3):191–202. doi: 10.1016/0022-510x(82)90026-0. [DOI] [PubMed] [Google Scholar]
  6. Bowen D. M., Smith C. B., White P., Davison A. N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976 Sep;99(3):459–496. doi: 10.1093/brain/99.3.459. [DOI] [PubMed] [Google Scholar]
  7. Chen C. P., Alder J. T., Bowen D. M., Esiri M. M., McDonald B., Hope T., Jobst K. A., Francis P. T. Presynaptic serotonergic markers in community-acquired cases of Alzheimer's disease: correlations with depression and neuroleptic medication. J Neurochem. 1996 Apr;66(4):1592–1598. doi: 10.1046/j.1471-4159.1996.66041592.x. [DOI] [PubMed] [Google Scholar]
  8. Chessell I. P., Francis P. T., Bowen D. M. Changes in cortical nicotinic acetylcholine receptor numbers following unilateral destruction of pyramidal neurones by intrastriatal volkensin injection. Neurodegeneration. 1995 Dec;4(4):415–424. doi: 10.1006/neur.1995.0050. [DOI] [PubMed] [Google Scholar]
  9. Clarke P. B., Reuben M., el-Bizri H. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br J Pharmacol. 1994 Mar;111(3):695–702. doi: 10.1111/j.1476-5381.1994.tb14793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cummings J. L., Cyrus P. A., Bieber F., Mas J., Orazem J., Gulanski B. Metrifonate treatment of the cognitive deficits of Alzheimer's disease. Metrifonate Study Group. Neurology. 1998 May;50(5):1214–1221. doi: 10.1212/wnl.50.5.1214. [DOI] [PubMed] [Google Scholar]
  11. Davies P., Maloney A. J. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976 Dec 25;2(8000):1403–1403. doi: 10.1016/s0140-6736(76)91936-x. [DOI] [PubMed] [Google Scholar]
  12. Davis K. L., Thal L. J., Gamzu E. R., Davis C. S., Woolson R. F., Gracon S. I., Drachman D. A., Schneider L. S., Whitehouse P. J., Hoover T. M. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer's disease. The Tacrine Collaborative Study Group. N Engl J Med. 1992 Oct 29;327(18):1253–1259. doi: 10.1056/NEJM199210293271801. [DOI] [PubMed] [Google Scholar]
  13. Dawson G.R., Heyes C.M., Iversen S.D. Pharmacological mechanisms and animal models of cognition. Behav Pharmacol. 1992 Aug;3(4):285–297. [PubMed] [Google Scholar]
  14. Dawson R. M. Reversibility of the inhibition of acetylcholinesterase by tacrine. Neurosci Lett. 1990 Oct 2;118(1):85–87. doi: 10.1016/0304-3940(90)90254-7. [DOI] [PubMed] [Google Scholar]
  15. DeKosky S. T., Scheff S. W., Styren S. D. Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration. 1996 Dec;5(4):417–421. doi: 10.1006/neur.1996.0056. [DOI] [PubMed] [Google Scholar]
  16. DeKosky S. T., Scheff S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990 May;27(5):457–464. doi: 10.1002/ana.410270502. [DOI] [PubMed] [Google Scholar]
  17. Dijk S. N., Francis P. T., Stratmann G. C., Bowen D. M. Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway: implications for Alzheimer's disease. J Neurochem. 1995 Nov;65(5):2165–2169. doi: 10.1046/j.1471-4159.1995.65052165.x. [DOI] [PubMed] [Google Scholar]
  18. Drachman D. A., Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol. 1974 Feb;30(2):113–121. doi: 10.1001/archneur.1974.00490320001001. [DOI] [PubMed] [Google Scholar]
  19. Dunne M. P., Hartley L. R. Scopolamine and the control of attention in humans. Psychopharmacology (Berl) 1986;89(1):94–97. doi: 10.1007/BF00175197. [DOI] [PubMed] [Google Scholar]
  20. Dunnett S. B., Everitt B. J., Robbins T. W. The basal forebrain-cortical cholinergic system: interpreting the functional consequences of excitotoxic lesions. Trends Neurosci. 1991 Nov;14(11):494–501. doi: 10.1016/0166-2236(91)90061-x. [DOI] [PubMed] [Google Scholar]
  21. Eagger S. A., Harvey R. J. Clinical heterogeneity: responders to cholinergic therapy. Alzheimer Dis Assoc Disord. 1995;9 (Suppl 2):37–42. [PubMed] [Google Scholar]
  22. Esiri M. M. The basis for behavioural disturbances in dementia. J Neurol Neurosurg Psychiatry. 1996 Aug;61(2):127–130. doi: 10.1136/jnnp.61.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Farlow M., Gracon S. I., Hershey L. A., Lewis K. W., Sadowsky C. H., Dolan-Ureno J. A controlled trial of tacrine in Alzheimer's disease. The Tacrine Study Group. JAMA. 1992 Nov 11;268(18):2523–2529. [PubMed] [Google Scholar]
  24. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  25. Francis P. T., Bowen D. M., Lowe S. L., Neary D., Mann D. M., Snowden J. S. Somatostatin content and release measured in cerebral biopsies from demented patients. J Neurol Sci. 1987 Mar;78(1):1–16. doi: 10.1016/0022-510x(87)90073-6. [DOI] [PubMed] [Google Scholar]
  26. Francis P. T., Sims N. R., Procter A. W., Bowen D. M. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem. 1993 May;60(5):1589–1604. doi: 10.1111/j.1471-4159.1993.tb13381.x. [DOI] [PubMed] [Google Scholar]
  27. Fulton B., Benfield P. Galanthamine. Drugs Aging. 1996 Jul;9(1):60–67. doi: 10.2165/00002512-199609010-00006. [DOI] [PubMed] [Google Scholar]
  28. Galasko D., Hansen L. A., Katzman R., Wiederholt W., Masliah E., Terry R., Hill L. R., Lessin P., Thal L. J. Clinical-neuropathological correlations in Alzheimer's disease and related dementias. Arch Neurol. 1994 Sep;51(9):888–895. doi: 10.1001/archneur.1994.00540210060013. [DOI] [PubMed] [Google Scholar]
  29. Geaney D. P., Soper N., Shepstone B. J., Cowen P. J. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet. 1990 Jun 23;335(8704):1484–1487. doi: 10.1016/0140-6736(90)93028-n. [DOI] [PubMed] [Google Scholar]
  30. Gearing M., Mirra S. S., Hedreen J. C., Sumi S. M., Hansen L. A., Heyman A. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer's disease. Neurology. 1995 Mar;45(3 Pt 1):461–466. doi: 10.1212/wnl.45.3.461. [DOI] [PubMed] [Google Scholar]
  31. Gustafson L., Edvinsson L., Dahlgren N., Hagberg B., Risberg J., Rosén I., Fernö H. Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology (Berl) 1987;93(1):31–35. doi: 10.1007/BF02439583. [DOI] [PubMed] [Google Scholar]
  32. Hagan J. J., Salamone J. D., Simpson J., Iversen S. D., Morris R. G. Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behav Brain Res. 1988 Jan;27(1):9–20. doi: 10.1016/0166-4328(88)90105-2. [DOI] [PubMed] [Google Scholar]
  33. Halliwell J. V. M-current in human neocortical neurones. Neurosci Lett. 1986 Jun 6;67(1):1–6. doi: 10.1016/0304-3940(86)90198-9. [DOI] [PubMed] [Google Scholar]
  34. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991 Oct;12(10):383–388. doi: 10.1016/0165-6147(91)90609-v. [DOI] [PubMed] [Google Scholar]
  35. Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P. H., Silman I., Sussman J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9031–9035. doi: 10.1073/pnas.90.19.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Homor G., Kása P. Acetylcholinesterase resynthesis after DFP poisoning; histochemical and biochemical study. Acta Histochem. 1978;62(2):293–301. doi: 10.1016/S0065-1281(78)80095-6. [DOI] [PubMed] [Google Scholar]
  37. Hunter A. J., Murray T. K., Jones J. A., Cross A. J., Green A. R. The cholinergic pharmacology of tetrahydroaminoacridine in vivo and in vitro. Br J Pharmacol. 1989 Sep;98(1):79–86. doi: 10.1111/j.1476-5381.1989.tb16865.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hyman B. T., Van Hoesen G. W., Damasio A. R. Alzheimer's disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol. 1987 Jul;22(1):37–40. doi: 10.1002/ana.410220110. [DOI] [PubMed] [Google Scholar]
  39. Kar S., Issa A. M., Seto D., Auld D. S., Collier B., Quirion R. Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem. 1998 May;70(5):2179–2187. doi: 10.1046/j.1471-4159.1998.70052179.x. [DOI] [PubMed] [Google Scholar]
  40. Kish S. J., Robitaille Y., el-Awar M., Deck J. H., Simmons J., Schut L., Chang L. J., DiStefano L., Freedman M. Non-Alzheimer-type pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy. Ann Neurol. 1989 Sep;26(3):362–367. doi: 10.1002/ana.410260309. [DOI] [PubMed] [Google Scholar]
  41. Knapp M. J., Knopman D. S., Solomon P. R., Pendlebury W. W., Davis C. S., Gracon S. I. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. The Tacrine Study Group. JAMA. 1994 Apr 6;271(13):985–991. [PubMed] [Google Scholar]
  42. Knopman D. S. Metrifonate for Alzheimer's disease: is the next cholinesterase inhibitor better? Neurology. 1998 May;50(5):1203–1205. doi: 10.1212/wnl.50.5.1203. [DOI] [PubMed] [Google Scholar]
  43. Knopman D., Schneider L., Davis K., Talwalker S., Smith F., Hoover T., Gracon S. Long-term tacrine (Cognex) treatment: effects on nursing home placement and mortality, Tacrine Study Group. Neurology. 1996 Jul;47(1):166–177. doi: 10.1212/wnl.47.1.166. [DOI] [PubMed] [Google Scholar]
  44. Lewis D. A., Campbell M. J., Terry R. D., Morrison J. H. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J Neurosci. 1987 Jun;7(6):1799–1808. doi: 10.1523/JNEUROSCI.07-06-01799.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lovestone S., Graham N., Howard R. Guidelines on drug treatments for Alzheimer's disease. Lancet. 1997 Jul 26;350(9073):232–233. doi: 10.1016/S0140-6736(05)62221-0. [DOI] [PubMed] [Google Scholar]
  46. Lovestone S., Reynolds C. H., Latimer D., Davis D. R., Anderton B. H., Gallo J. M., Hanger D., Mulot S., Marquardt B., Stabel S. Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol. 1994 Dec 1;4(12):1077–1086. doi: 10.1016/s0960-9822(00)00246-3. [DOI] [PubMed] [Google Scholar]
  47. Lowe S. L., Bowen D. M., Francis P. T., Neary D. Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer's disease. Neuroscience. 1990;38(3):571–577. doi: 10.1016/0306-4522(90)90051-5. [DOI] [PubMed] [Google Scholar]
  48. Mann D. M. Pyramidal nerve cell loss in Alzheimer's disease. Neurodegeneration. 1996 Dec;5(4):423–427. doi: 10.1006/neur.1996.0057. [DOI] [PubMed] [Google Scholar]
  49. McCormick D. A., Prince D. A. Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6344–6348. doi: 10.1073/pnas.82.18.6344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  51. Mihara M., Ohnishi A., Tomono Y., Hasegawa J., Shimamura Y., Yamazaki K., Morishita N. Pharmacokinetics of E2020, a new compound for Alzheimer's disease, in healthy male volunteers. Int J Clin Pharmacol Ther Toxicol. 1993 May;31(5):223–229. [PubMed] [Google Scholar]
  52. Moriearty P. L., Becker R. E. Inhibition of human brain and RBC acetylcholinesterase (AChE) by heptylphysostigmine (HPTL). Methods Find Exp Clin Pharmacol. 1992 Oct;14(8):615–621. [PubMed] [Google Scholar]
  53. Morris J. C., Cyrus P. A., Orazem J., Mas J., Bieber F., Ruzicka B. B., Gulanski B. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer's disease. Neurology. 1998 May;50(5):1222–1230. doi: 10.1212/wnl.50.5.1222. [DOI] [PubMed] [Google Scholar]
  54. Muir J. L., Everitt B. J., Robbins T. W. AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci. 1994 Apr;14(4):2313–2326. doi: 10.1523/JNEUROSCI.14-04-02313.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Muir J. L., Everitt B. J., Robbins T. W. Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology (Berl) 1995 Mar;118(1):82–92. doi: 10.1007/BF02245253. [DOI] [PubMed] [Google Scholar]
  56. Najlerahim A., Bowen D. M. Biochemical measurements in Alzheimer's disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J. 1988 Apr 1;251(1):305–308. doi: 10.1042/bj2510305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Neary D., Snowden J. S., Mann D. M., Bowen D. M., Sims N. R., Northen B., Yates P. O., Davison A. N. Alzheimer's disease: a correlative study. J Neurol Neurosurg Psychiatry. 1986 Mar;49(3):229–237. doi: 10.1136/jnnp.49.3.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nilsson L., Adem A., Hardy J., Winblad B., Nordberg A. Do tetrahydroaminoacridine (THA) and physostigmine restore acetylcholine release in Alzheimer brains via nicotinic receptors? J Neural Transm. 1987;70(3-4):357–368. doi: 10.1007/BF01253610. [DOI] [PubMed] [Google Scholar]
  59. Nilsson L., Nordberg A., Hardy J., Wester P., Winblad B. Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm. 1986;67(3-4):275–285. doi: 10.1007/BF01243353. [DOI] [PubMed] [Google Scholar]
  60. Nitsch R. M. From acetylcholine to amyloid: neurotransmitters and the pathology of Alzheimer's disease. Neurodegeneration. 1996 Dec;5(4):477–482. doi: 10.1006/neur.1996.0066. [DOI] [PubMed] [Google Scholar]
  61. Nochi S., Asakawa N., Sato T. Kinetic study on the inhibition of acetylcholinesterase by 1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methylpiperidine hydrochloride (E2020). Biol Pharm Bull. 1995 Aug;18(8):1145–1147. doi: 10.1248/bpb.18.1145. [DOI] [PubMed] [Google Scholar]
  62. Nordberg A., Alafuzoff I., Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res. 1992 Jan;31(1):103–111. doi: 10.1002/jnr.490310115. [DOI] [PubMed] [Google Scholar]
  63. Palmer A. M., Gershon S. Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic? FASEB J. 1990 Jul;4(10):2745–2752. doi: 10.1096/fasebj.4.10.2165009. [DOI] [PubMed] [Google Scholar]
  64. Palmer A. M., Procter A. W., Stratmann G. C., Bowen D. M. Excitatory amino acid-releasing and cholinergic neurones in Alzheimer's disease. Neurosci Lett. 1986 May 15;66(2):199–204. doi: 10.1016/0304-3940(86)90190-4. [DOI] [PubMed] [Google Scholar]
  65. Palmer A. M., Stratmann G. C., Procter A. W., Bowen D. M. Possible neurotransmitter basis of behavioral changes in Alzheimer's disease. Ann Neurol. 1988 Jun;23(6):616–620. doi: 10.1002/ana.410230616. [DOI] [PubMed] [Google Scholar]
  66. Pearce B. D., Potter L. T. Effects of tetrahydroaminoacridine on M1 and M2 muscarine receptors. Neurosci Lett. 1988 Jun 7;88(3):281–285. doi: 10.1016/0304-3940(88)90224-8. [DOI] [PubMed] [Google Scholar]
  67. Perry E. K., Gibson P. H., Blessed G., Perry R. H., Tomlinson B. E. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977 Nov;34(2):247–265. doi: 10.1016/0022-510x(77)90073-9. [DOI] [PubMed] [Google Scholar]
  68. Perry E. K., Smith C. J., Court J. A., Bonham J. R., Rodway M., Atack J. R. Interaction of 9-amino-1,2,3,4-tetrahydroaminoacridine (THA) with human cortical nicotinic and muscarinic receptor binding in vitro. Neurosci Lett. 1988 Aug 31;91(2):211–216. doi: 10.1016/0304-3940(88)90770-7. [DOI] [PubMed] [Google Scholar]
  69. Perry E. K., Tomlinson B. E., Blessed G., Bergmann K., Gibson P. H., Perry R. H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978 Nov 25;2(6150):1457–1459. doi: 10.1136/bmj.2.6150.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Poorheidari G., Stanhope K. J., Pratt J. A. Effects of the potassium channel blockers, apamin and 4-aminopyridine, on scopolamine-induced deficits in the delayed matching to position task in rats: a comparison with the cholinesterase inhibitor E2020. Psychopharmacology (Berl) 1998 Feb;135(3):242–255. doi: 10.1007/s002130050506. [DOI] [PubMed] [Google Scholar]
  71. Procter A. W., Francis P. T., Holmes C., Webster M. T., Qume M., Stratmann G. C., Doshi R., Mann D. M., Harrison P. J., Pearson R. C. beta-Amyloid precursor protein isoforms show correlations with neurones but not with glia of demented subjects. Acta Neuropathol. 1994;88(6):545–552. doi: 10.1007/BF00296491. [DOI] [PubMed] [Google Scholar]
  72. Procter A. W. Neurochemical correlates of dementia. Neurodegeneration. 1996 Dec;5(4):403–407. doi: 10.1006/neur.1996.0054. [DOI] [PubMed] [Google Scholar]
  73. Procter A. W., Palmer A. M., Francis P. T., Lowe S. L., Neary D., Murphy E., Doshi R., Bowen D. M. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J Neurochem. 1988 Mar;50(3):790–802. doi: 10.1111/j.1471-4159.1988.tb02983.x. [DOI] [PubMed] [Google Scholar]
  74. Rapoport S. I., Hatanpä K., Brady D. R., Chandrasekaran K. Brain energy metabolism, cognitive function and down-regulated oxidative phosphorylation in Alzheimer disease. Neurodegeneration. 1996 Dec;5(4):473–476. doi: 10.1006/neur.1996.0065. [DOI] [PubMed] [Google Scholar]
  75. Rogers S. L., Doody R. S., Mohs R. C., Friedhoff L. T. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med. 1998 May 11;158(9):1021–1031. doi: 10.1001/archinte.158.9.1021. [DOI] [PubMed] [Google Scholar]
  76. Rogers S. L., Farlow M. R., Doody R. S., Mohs R., Friedhoff L. T. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology. 1998 Jan;50(1):136–145. doi: 10.1212/wnl.50.1.136. [DOI] [PubMed] [Google Scholar]
  77. Rogers S. L., Friedhoff L. T. Long-term efficacy and safety of donepezil in the treatment of Alzheimer's disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol. 1998 Feb;8(1):67–75. doi: 10.1016/s0924-977x(97)00079-5. [DOI] [PubMed] [Google Scholar]
  78. Rogers S. L., Friedhoff L. T. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia. 1996 Nov-Dec;7(6):293–303. doi: 10.1159/000106895. [DOI] [PubMed] [Google Scholar]
  79. Rosen W. G., Mohs R. C., Davis K. L. A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984 Nov;141(11):1356–1364. doi: 10.1176/ajp.141.11.1356. [DOI] [PubMed] [Google Scholar]
  80. Rossor M. N., Garrett N. J., Johnson A. L., Mountjoy C. Q., Roth M., Iversen L. L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain. 1982 Jun;105(Pt 2):313–330. doi: 10.1093/brain/105.2.313. [DOI] [PubMed] [Google Scholar]
  81. Rossor M., Iversen L. L. Non-cholinergic neurotransmitter abnormalities in Alzheimer's disease. Br Med Bull. 1986 Jan;42(1):70–74. doi: 10.1093/oxfordjournals.bmb.a072101. [DOI] [PubMed] [Google Scholar]
  82. Rylett R. J., Ball M. J., Colhoun E. H. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer's disease. Brain Res. 1983 Dec 19;289(1-2):169–175. doi: 10.1016/0006-8993(83)90017-3. [DOI] [PubMed] [Google Scholar]
  83. Sadot E., Gurwitz D., Barg J., Behar L., Ginzburg I., Fisher A. Activation of m1 muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem. 1996 Feb;66(2):877–880. doi: 10.1046/j.1471-4159.1996.66020877.x. [DOI] [PubMed] [Google Scholar]
  84. Schneider L. S., Olin J. T., Doody R. S., Clark C. M., Morris J. C., Reisberg B., Schmitt F. A., Grundman M., Thomas R. G., Ferris S. H. Validity and reliability of the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 (Suppl 2):S22–S32. doi: 10.1097/00002093-199700112-00004. [DOI] [PubMed] [Google Scholar]
  85. Sims N. R., Bowen D. M., Allen S. J., Smith C. C., Neary D., Thomas D. J., Davison A. N. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem. 1983 Feb;40(2):503–509. doi: 10.1111/j.1471-4159.1983.tb11311.x. [DOI] [PubMed] [Google Scholar]
  86. Stanhope K. J., McLenachan A. P., Dourish C. T. Dissociation between cognitive and motor/motivational deficits in the delayed matching to position test: effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology (Berl) 1995 Dec;122(3):268–280. doi: 10.1007/BF02246548. [DOI] [PubMed] [Google Scholar]
  87. Sugimoto H., Iimura Y., Yamanishi Y., Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J Med Chem. 1995 Nov 24;38(24):4821–4829. doi: 10.1021/jm00024a009. [DOI] [PubMed] [Google Scholar]
  88. Sussman J. L., Harel M., Silman I. Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem Biol Interact. 1993 Jun;87(1-3):187–197. doi: 10.1016/0009-2797(93)90042-w. [DOI] [PubMed] [Google Scholar]
  89. Taylor P. The cholinesterases. J Biol Chem. 1991 Mar 5;266(7):4025–4028. [PubMed] [Google Scholar]
  90. Thomsen T., Zendeh B., Fischer J. P., Kewitz H. In vitro effects of various cholinesterase inhibitors on acetyl- and butyrylcholinesterase of healthy volunteers. Biochem Pharmacol. 1991 Jan 1;41(1):139–141. doi: 10.1016/0006-2952(91)90022-w. [DOI] [PubMed] [Google Scholar]
  91. Warburton D. M., Rusted J. M. Cholinergic control of cognitive resources. Neuropsychobiology. 1993;28(1-2):43–46. doi: 10.1159/000118998. [DOI] [PubMed] [Google Scholar]
  92. Warpman U., Alafuzoff I., Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain--alterations in Alzheimer's disease. Neurosci Lett. 1993 Feb 5;150(1):39–43. doi: 10.1016/0304-3940(93)90103-r. [DOI] [PubMed] [Google Scholar]
  93. Whitehouse P. J., Martino A. M., Marcus K. A., Zweig R. M., Singer H. S., Price D. L., Kellar K. J. Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol. 1988 Jul;45(7):722–724. doi: 10.1001/archneur.1988.00520310028012. [DOI] [PubMed] [Google Scholar]
  94. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., Delon M. R. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982 Mar 5;215(4537):1237–1239. doi: 10.1126/science.7058341. [DOI] [PubMed] [Google Scholar]
  95. Wilcock G. K., Esiri M. M., Bowen D. M., Smith C. C. Alzheimer's disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci. 1982 Dec;57(2-3):407–417. doi: 10.1016/0022-510x(82)90045-4. [DOI] [PubMed] [Google Scholar]
  96. Wilcock G. K., Esiri M. M. Plaques, tangles and dementia. A quantitative study. J Neurol Sci. 1982 Nov;56(2-3):343–356. doi: 10.1016/0022-510x(82)90155-1. [DOI] [PubMed] [Google Scholar]
  97. Zhu X. D., Cuadra G., Brufani M., Maggi T., Pagella P. G., Williams E., Giacobini E. Effects of MF-268, a new cholinesterase inhibitor, on acetylcholine and biogenic amines in rat cortex. J Neurosci Res. 1996 Jan 1;43(1):120–126. doi: 10.1002/jnr.490430116. [DOI] [PubMed] [Google Scholar]
  98. van der Staay F. J., Raaijmakers W. G., Lammers A. J., Tonnaer J. A. Selective fimbria lesions impair acquisition of working and reference memory of rats in a complex spatial discrimination task. Behav Brain Res. 1989 Mar 1;32(2):151–161. doi: 10.1016/s0166-4328(89)80081-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES