Abstract
The pathophysiological roles of superoxide (O2.-) at the site of infection of facultative intracellular bacteria were examined in this study. To evaluate the actual in vivo generation of the superoxide, an ex vivo chemiluminescence assay was newly developed. When ICR mice were infected with a sublethal dose (8 x 10(4) CFU) of Salmonella typhimurium, the number of bacteria in the liver reached its peak at 5 days after infection (10(5.05) CFU/g of liver) and decreased thereafter. At 21 days after infection, the bacteria became undetectable. On the other hand, phorbol myristate 13-acetate-stimulated O2.- generation reached a maximum at 7 days after infection (mean photon count, 1,249 cps versus 28.8 cps before infection; n = 4) and decreased thereafter to a level similar to that before infection at 21 days after infection (28.8 cps). Histological examinations revealed that the total area of the lesions reached a peak at 7 days after infection (7.2 x 10(4) microns 2/10 visual fields). In the early phase, a microabscess with infiltration of polymorphonuclear cells was noted, and then, in the late stage, the lesion was replaced by granulation with mononuclear cell infiltration. When microscopic lesions were measured histologically, a significant correlation between the area of the lesions and phorbol myristate 13-acetate-stimulated O2.- generation was observed, which suggested that superoxide was responsible for the generation of the lesions. Modified superoxide dismutase, i.e., alpha-4-([6-(N-maleimido)hexanoyloxymethyl] cumyl)half-butyl-esterified poly(stylrene-co-malelic acid)-conjugated superoxide dismutase (SM-SOD), was then applied. When SM-SOD was administered to suppress the O2.- generation in vivo, the number of bacteria increased (10(6.1) CFU). However, the lesion formation was inhibited (total lesion area, 0.3 x 10(4) microns 2). These results suggest that the establishment of the microabscess and granuloma formation after S. typhimurium infection is not due to the bacteria per se but rather to the O2.- from the host's phagocytes. Two aspects of the O2.-, i.e., the bactericidal role and the tissue-injurious effect, were clearly demonstrated in this study. Therefore, the information obtained from these results is useful in designing treatment strategy for similar kinds of infection.
Full Text
The Full Text of this article is available as a PDF (966.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike T., Ando M., Oda T., Doi T., Ijiri S., Araki S., Maeda H. Dependence on O2- generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest. 1990 Mar;85(3):739–745. doi: 10.1172/JCI114499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bautista A. P., Spitzer J. J. Inhibition of nitric oxide formation in vivo enhances superoxide release by the perfused liver. Am J Physiol. 1994 May;266(5 Pt 1):G783–G788. doi: 10.1152/ajpgi.1994.266.5.G783. [DOI] [PubMed] [Google Scholar]
- Belenky S. N., Robbins R. A., Rennard S. I., Gossman G. L., Nelson K. J., Rubinstein I. Inhibitors of nitric oxide synthase attenuate human neutrophil chemotaxis in vitro. J Lab Clin Med. 1993 Oct;122(4):388–394. [PubMed] [Google Scholar]
- Buchmeier N. A., Lipps C. J., So M. Y., Heffron F. Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol. 1993 Mar;7(6):933–936. doi: 10.1111/j.1365-2958.1993.tb01184.x. [DOI] [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 1985 Jul;41(3):753–762. doi: 10.1016/s0092-8674(85)80056-8. [DOI] [PubMed] [Google Scholar]
- Clancy R. M., Leszczynska-Piziak J., Abramson S. B. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest. 1992 Sep;90(3):1116–1121. doi: 10.1172/JCI115929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins F. M., Mackaness G. B., Blanden R. V. Infection-immunity in experimental salmonellosis. J Exp Med. 1966 Oct 1;124(4):601–619. doi: 10.1084/jem.124.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conlan J. W., North R. J. Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun. 1992 Dec;60(12):5164–5171. doi: 10.1128/iai.60.12.5164-5171.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlap N. E., Benjamin W. H., Jr, Berry A. K., Eldridge J. H., Briles D. E. A 'safe-site' for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog. 1992 Sep;13(3):181–190. doi: 10.1016/0882-4010(92)90019-k. [DOI] [PubMed] [Google Scholar]
- Farr S. B., Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev. 1991 Dec;55(4):561–585. doi: 10.1128/mr.55.4.561-585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferro T. J., Hocking D. C., Johnson A. Tumor necrosis factor-alpha alters pulmonary vasoreactivity via neutrophil-derived oxidants. Am J Physiol. 1993 Nov;265(5 Pt 1):L462–L471. doi: 10.1152/ajplung.1993.265.5.L462. [DOI] [PubMed] [Google Scholar]
- Fu Y. K., Arkins S., Li Y. M., Dantzer R., Kelley K. W. Reduction in superoxide anion secretion and bactericidal activity of neutrophils from aged rats: reversal by the combination of gamma interferon and growth hormone. Infect Immun. 1994 Jan;62(1):1–8. doi: 10.1128/iai.62.1.1-8.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galdiero F., de L'ero G. C., Benedetto N., Galdiero M., Tufano M. A. Release of cytokines induced by Salmonella typhimurium porins. Infect Immun. 1993 Jan;61(1):155–161. doi: 10.1128/iai.61.1.155-161.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautreaux M. D., Deitch E. A., Berg R. D. T lymphocytes in host defense against bacterial translocation from the gastrointestinal tract. Infect Immun. 1994 Jul;62(7):2874–2884. doi: 10.1128/iai.62.7.2874-2884.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo Y. N., Hsu H. S., Mumaw V. R., Nakoneczna I. Electronmicroscopy studies on the bactericidal action of inflammatory leukocytes in murine salmonellosis. J Med Microbiol. 1986 Mar;21(2):151–159. doi: 10.1099/00222615-21-2-151. [DOI] [PubMed] [Google Scholar]
- Hsu H. S. Pathogenesis and immunity in murine salmonellosis. Microbiol Rev. 1989 Dec;53(4):390–409. doi: 10.1128/mr.53.4.390-409.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda T., Shimokata K., Daikoku T., Fukatsu T., Tsutsui Y., Nishiyama Y. Pathogenesis of cytomegalovirus-associated pneumonitis in ICR mice: possible involvement of superoxide radicals. Arch Virol. 1992;127(1-4):11–24. doi: 10.1007/BF01309571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Ebashi I., Watanabe N., Morino Y. Synthesis of a superoxide dismutase derivative that circulates bound to albumin and accumulates in tissues whose pH is decreased. Biochemistry. 1989 Aug 8;28(16):6619–6624. doi: 10.1021/bi00442a013. [DOI] [PubMed] [Google Scholar]
- Kubes P. Polymorphonuclear leukocyte--endothelium interactions: a role for pro-inflammatory and anti-inflammatory molecules. Can J Physiol Pharmacol. 1993 Jan;71(1):88–97. doi: 10.1139/y93-013. [DOI] [PubMed] [Google Scholar]
- Lynn W. A., Raetz C. R., Qureshi N., Golenbock D. T. Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J Immunol. 1991 Nov 1;147(9):3072–3079. [PubMed] [Google Scholar]
- Ma X. L., Weyrich A. S., Lefer D. J., Lefer A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb;72(2):403–412. doi: 10.1161/01.res.72.2.403. [DOI] [PubMed] [Google Scholar]
- Mastroeni P., Villarreal-Ramos B., Hormaeche C. E. Role of T cells, TNF alpha and IFN gamma in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro- Salmonella vaccines. Microb Pathog. 1992 Dec;13(6):477–491. doi: 10.1016/0882-4010(92)90014-f. [DOI] [PubMed] [Google Scholar]
- Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida A., Kimura H., Nakano M., Goto T. A sensitive and specific chemiluminescence method for estimating the ability of human granulocytes and monocytes to generate O2-. Clin Chim Acta. 1989 Feb 15;179(2):177–181. doi: 10.1016/0009-8981(89)90164-2. [DOI] [PubMed] [Google Scholar]
- Nnalue N. A., Shnyra A., Hultenby K., Lindberg A. A. Salmonella choleraesuis and Salmonella typhimurium associated with liver cells after intravenous inoculation of rats are localized mainly in Kupffer cells and multiply intracellularly. Infect Immun. 1992 Jul;60(7):2758–2768. doi: 10.1128/iai.60.7.2758-2768.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prónai L., Nakazawa H., Ichimori K., Saigusa Y., Ohkubo T., Hiramatsu K., Arimori S., Fehér J. Time course of superoxide generation by leukocytes--the MCLA chemiluminescence system. Inflammation. 1992 Oct;16(5):437–450. doi: 10.1007/BF00918970. [DOI] [PubMed] [Google Scholar]
- Qu J. M., Leaver H. A., Aldhous M. C., Yap P. L. The effect of endotoxin lipopolysaccharide from different bacterial species on the generation of intracellular inositol trisphosphate and superoxide in a human phagocytic cell line. FEMS Microbiol Immunol. 1990 Dec;2(5-6):279–283. doi: 10.1111/j.1574-6968.1990.tb03530.x. [DOI] [PubMed] [Google Scholar]
- Suematsu M., Suzuki H., Ishii H., Kato S., Yanagisawa T., Asako H., Suzuki M., Tsuchiya M. Early midzonal oxidative stress preceding cell death in hypoperfused rat liver. Gastroenterology. 1992 Sep;103(3):994–1001. doi: 10.1016/0016-5085(92)90034-v. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Ushijima T., Ozaki Y. Changes in hepatic superoxide dismutase and xanthine oxidase activity in mice infected with Salmonella typhimurium and Pseudomonas aeruginosa. J Med Microbiol. 1988 Aug;26(4):281–284. doi: 10.1099/00222615-26-4-281. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Koga Y., Lu Y. Y., Zhang X. Y., Wang Y., Kimura G., Nomoto K. Murine cytomegalovirus-associated pneumonitis in the lungs free of the virus. J Clin Invest. 1994 Sep;94(3):1019–1025. doi: 10.1172/JCI117415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T., Blumenstock E., Kanegasaki S. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria. Infect Immun. 1981 Jun;32(3):1242–1248. doi: 10.1128/iai.32.3.1242-1248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tufano M. A., Rossano F., Catalanotti P., Liguori G., Capasso C., Ceccarelli M. T., Marinelli P. Immunobiological activities of Helicobacter pylori porins. Infect Immun. 1994 Apr;62(4):1392–1399. doi: 10.1128/iai.62.4.1392-1399.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tufano M. A., Tetta C., Biancone L., Iorio E. L., Baroni A., Giovane A., Camussi G. Salmonella typhimurium porins stimulate platelet-activating factor synthesis by human polymorphonuclear neutrophils. J Immunol. 1992 Aug 1;149(3):1023–1030. [PubMed] [Google Scholar]