Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Mar;66(3):323–330. doi: 10.1136/jnnp.66.3.323

Three dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis

C Liu 1, S Edwards 1, Q Gong 1, N Roberts 1, L Blumhardt 1
PMCID: PMC1736263  PMID: 10084530

Abstract

OBJECTIVE—The association between brain atrophy and permanent functional deficits in multiple sclerosis and the temporal relation between atrophy and the clinical disease course have seldom been investigated. This study aims to determine the amount of infratentorial and supratentorial atrophy in patients by comparison with healthy controls, to establish the relation between atrophy and disability, and to derive the rates of volume loss in individual patients from their estimated disease durations.
METHODS—Three dimensional acquired MRI was performed on 20 relapsing-remitting and 20 secondary progressive multiple sclerosis patients and 10 control subjects. Volume data on infratentorial and supratentorial structures were obtained using the Cavalieri method of modern design stereology in combination with point counting. Corpus callosal sectional area and "T2 lesion load" were also determined.
RESULTS—Significantly reduced infratentorial and cerebral white matter volumes and corpus callosal sectional areas occurred in all patients compared with controls (p=0.0001-0.004). Mean estimates of volume loss in the cohort were −21%,−19%,−46%, and−12% for the brain stem, cerebellum, upper cervical cord and white matter, respectively, and −21% for the corpus callosal sectional area. Analysis of the amount of atrophy (volume differences between patients and controls) showed that upper cervical cord and cerebral white matter atrophy correlated with the expanded disability status scale (r=−0.37 and −0.37, p=0.018-0.023) and the Scripps neurologic rating scale scores (r=+0.49 and +0.43, p= 0.002-0.007). There was no relation between estimated volume loss in the supratentorial and infratentorial compartments. The "T2 lesion load" was associated with ventricular enlargement and corpus callosal atrophy (r=+0.50 and−0.55, p=0.0003-0.0012). Infratentorial atrophy rates correlated with baseline exacerbation rates (r=−0.50 to−0.48, p=0.0016-0.0021) and were higher in relapsing-remitting than secondary progressive patients (p=0.009-0.02).
CONCLUSIONS—Significant cerebral and spinal cord volume reductions occurred in both patient subgroups compared with controls. Functional correlates were found with estimated volume loss in the upper cervical cord and cerebral white matter. Particularly for infratentorial structures, estimated rates of atrophy were higher in relapsing-remitting than secondary progressive patients, suggesting that atrophy, perhaps mainly due to tract degeneration, begins early in multiple sclerosis and may relate predominantly to acute inflammatory events, with or without other gradual non-inflammatory processes later in the disease course.



Full Text

The Full Text of this article is available as a PDF (174.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold D. L., Wolinsky J. S., Matthews P. M., Falini A. The use of magnetic resonance spectroscopy in the evaluation of the natural history of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998 May;64 (Suppl 1):S94–101. [PubMed] [Google Scholar]
  2. Barbosa S., Blumhardt L. D., Roberts N., Lock T., Edwards R. H. Magnetic resonance relaxation time mapping in multiple sclerosis: normal appearing white matter and the "invisible" lesion load. Magn Reson Imaging. 1994;12(1):33–42. doi: 10.1016/0730-725x(94)92350-7. [DOI] [PubMed] [Google Scholar]
  3. Barnard R. O., Triggs M. Corpus callosum in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1974 Nov;37(11):1259–1264. doi: 10.1136/jnnp.37.11.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumhefner R. W., Tourtellotte W. W., Syndulko K., Waluch V., Ellison G. W., Meyers L. W., Cohen S. N., Osborne M., Shapshak P. Quantitative multiple sclerosis plaque assessment with magnetic resonance imaging. Its correlation with clinical parameters, evoked potentials, and intra-blood-brain barrier IgG synthesis. Arch Neurol. 1990 Jan;47(1):19–26. doi: 10.1001/archneur.1990.00530010027014. [DOI] [PubMed] [Google Scholar]
  5. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  6. Blatter D. D., Bigler E. D., Gale S. D., Johnson S. C., Anderson C. V., Burnett B. M., Parker N., Kurth S., Horn S. D. Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. AJNR Am J Neuroradiol. 1995 Feb;16(2):241–251. [PMC free article] [PubMed] [Google Scholar]
  7. Broman T., Andersen O., Bergmann L. Clinical studies on multiple sclerosis. I. Presentation of an incidence material from Gothenburg. Acta Neurol Scand. 1981 Jan;63(1):6–33. [PubMed] [Google Scholar]
  8. Confavreux C., Aimard G., Devic M. Course and prognosis of multiple sclerosis assessed by the computerized data processing of 349 patients. Brain. 1980 Jun;103(2):281–300. doi: 10.1093/brain/103.2.281. [DOI] [PubMed] [Google Scholar]
  9. Davie C. A., Barker G. J., Thompson A. J., Tofts P. S., McDonald W. I., Miller D. H. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):736–742. doi: 10.1136/jnnp.63.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davie C. A., Barker G. J., Webb S., Tofts P. S., Thompson A. J., Harding A. E., McDonald W. I., Miller D. H. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain. 1995 Dec;118(Pt 6):1583–1592. doi: 10.1093/brain/118.6.1583. [DOI] [PubMed] [Google Scholar]
  11. Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. Axonal damage in acute multiple sclerosis lesions. Brain. 1997 Mar;120(Pt 3):393–399. doi: 10.1093/brain/120.3.393. [DOI] [PubMed] [Google Scholar]
  12. Filippi M., Campi A., Colombo B., Pereira C., Martinelli V., Baratti C., Comi G. A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol. 1996 Jul;243(7):502–505. doi: 10.1007/BF00886870. [DOI] [PubMed] [Google Scholar]
  13. Filippi M., Yousry T., Horsfield M. A., Alkadhi H., Rovaris M., Campi A., Voltz R., Comi G. A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol. 1996 Dec;40(6):901–907. doi: 10.1002/ana.410400612. [DOI] [PubMed] [Google Scholar]
  14. Fu L., Matthews P. M., De Stefano N., Worsley K. J., Narayanan S., Francis G. S., Antel J. P., Wolfson C., Arnold D. L. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain. 1998 Jan;121(Pt 1):103–113. doi: 10.1093/brain/121.1.103. [DOI] [PubMed] [Google Scholar]
  15. Gundersen H. J. Stereology: the fast lane between neuroanatomy and brain function--or still only a tightrope? Acta Neurol Scand Suppl. 1992;137:8–13. doi: 10.1111/j.1600-0404.1992.tb05032.x. [DOI] [PubMed] [Google Scholar]
  16. Guttmann C. R., Jolesz F. A., Kikinis R., Killiany R. J., Moss M. B., Sandor T., Albert M. S. White matter changes with normal aging. Neurology. 1998 Apr;50(4):972–978. doi: 10.1212/wnl.50.4.972. [DOI] [PubMed] [Google Scholar]
  17. Hatazawa J., Ito M., Yamaura H., Matsuzawa T. Sex difference in brain atrophy during aging; a quantitative study with computed tomography. J Am Geriatr Soc. 1982 Apr;30(4):235–239. doi: 10.1111/j.1532-5415.1982.tb07092.x. [DOI] [PubMed] [Google Scholar]
  18. Hauser S. L., Dawson D. M., Lehrich J. R., Beal M. F., Kevy S. V., Propper R. D., Mills J. A., Weiner H. L. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N Engl J Med. 1983 Jan 27;308(4):173–180. doi: 10.1056/NEJM198301273080401. [DOI] [PubMed] [Google Scholar]
  19. Kidd D., Thorpe J. W., Kendall B. E., Barker G. J., Miller D. H., McDonald W. I., Thompson A. J. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996 Jan;60(1):15–19. doi: 10.1136/jnnp.60.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kidd D., Thorpe J. W., Thompson A. J., Kendall B. E., Moseley I. F., MacManus D. G., McDonald W. I., Miller D. H. Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology. 1993 Dec;43(12):2632–2637. doi: 10.1212/wnl.43.12.2632. [DOI] [PubMed] [Google Scholar]
  21. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  22. Lassmann H., Suchanek G., Ozawa K. Histopathology and the blood-cerebrospinal fluid barrier in multiple sclerosis. Ann Neurol. 1994;36 (Suppl):S42–S46. doi: 10.1002/ana.410360713. [DOI] [PubMed] [Google Scholar]
  23. Losseff N. A., Miller D. H. Measures of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998 May;64 (Suppl 1):S102–S105. [PubMed] [Google Scholar]
  24. Losseff N. A., Wang L., Lai H. M., Yoo D. S., Gawne-Cain M. L., McDonald W. I., Miller D. H., Thompson A. J. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain. 1996 Dec;119(Pt 6):2009–2019. doi: 10.1093/brain/119.6.2009. [DOI] [PubMed] [Google Scholar]
  25. Losseff N. A., Webb S. L., O'Riordan J. I., Page R., Wang L., Barker G. J., Tofts P. S., McDonald W. I., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996 Jun;119(Pt 3):701–708. doi: 10.1093/brain/119.3.701. [DOI] [PubMed] [Google Scholar]
  26. Lublin F. D., Reingold S. C. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996 Apr;46(4):907–911. doi: 10.1212/wnl.46.4.907. [DOI] [PubMed] [Google Scholar]
  27. Lycklama à Nijeholt G. J., Barkhof F., Scheltens P., Castelijns J. A., Adèr H., van Waesberghe J. H., Polman C., Jongen S. J., Valk J. MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability. AJNR Am J Neuroradiol. 1997 Jun-Jul;18(6):1041–1048. [PMC free article] [PubMed] [Google Scholar]
  28. MacFadyen D. J., Drance S. M., Douglas G. R., Airaksinen P. J., Mawson D. K., Paty D. W. The retinal nerve fiber layer, neuroretinal rim area, and visual evoked potentials in MS. Neurology. 1988 Sep;38(9):1353–1358. doi: 10.1212/wnl.38.9.1353. [DOI] [PubMed] [Google Scholar]
  29. Matthews P. M., Pioro E., Narayanan S., De Stefano N., Fu L., Francis G., Antel J., Wolfson C., Arnold D. L. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain. 1996 Jun;119(Pt 3):715–722. doi: 10.1093/brain/119.3.715. [DOI] [PubMed] [Google Scholar]
  30. McDonald W. I., Miller D. H., Barnes D. The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol. 1992 Aug;18(4):319–334. doi: 10.1111/j.1365-2990.1992.tb00794.x. [DOI] [PubMed] [Google Scholar]
  31. McDonald W. I., Miller D. H., Thompson A. J. Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon-beta. Ann Neurol. 1994 Jul;36(1):14–18. doi: 10.1002/ana.410360106. [DOI] [PubMed] [Google Scholar]
  32. Mellanby A. R., Reveley M. A. Effects of acute dehydration on computerized tomographic assessment of cerebral density and ventricular volume. Lancet. 1982 Oct 16;2(8303):874–874. doi: 10.1016/s0140-6736(82)90833-9. [DOI] [PubMed] [Google Scholar]
  33. Mews I., Bergmann M., Bunkowski S., Gullotta F., Brück W. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler. 1998 Apr;4(2):55–62. doi: 10.1177/135245859800400203. [DOI] [PubMed] [Google Scholar]
  34. Miller A. K., Alston R. L., Corsellis J. A. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol Appl Neurobiol. 1980 Mar-Apr;6(2):119–132. doi: 10.1111/j.1365-2990.1980.tb00283.x. [DOI] [PubMed] [Google Scholar]
  35. Narayana P. A., Doyle T. J., Lai D., Wolinsky J. S. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol. 1998 Jan;43(1):56–71. doi: 10.1002/ana.410430112. [DOI] [PubMed] [Google Scholar]
  36. Nijeholt G. J., van Walderveen M. A., Castelijns J. A., van Waesberghe J. H., Polman C., Scheltens P., Rosier P. F., Jongen P. J., Barkhof F. Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain. 1998 Apr;121(Pt 4):687–697. doi: 10.1093/brain/121.4.687. [DOI] [PubMed] [Google Scholar]
  37. O'Riordan J. I., Losseff N. A., Phatouros C., Thompson A. J., Moseley I. F., MacManus D. G., McDonald W. I., Miller D. H. Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):353–357. doi: 10.1136/jnnp.64.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pelletier J., Habib M., Lyon-Caen O., Salamon G., Poncet M., Khalil R. Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol. 1993 Oct;50(10):1077–1082. doi: 10.1001/archneur.1993.00540100066018. [DOI] [PubMed] [Google Scholar]
  39. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  40. Rivera-Quiñones C., McGavern D., Schmelzer J. D., Hunter S. F., Low P. A., Rodriguez M. Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat Med. 1998 Feb;4(2):187–193. doi: 10.1038/nm0298-187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roberts N., Garden A. S., Cruz-Orive L. M., Whitehouse G. H., Edwards R. H. Estimation of fetal volume by magnetic resonance imaging and stereology. Br J Radiol. 1994 Nov;67(803):1067–1077. doi: 10.1259/0007-1285-67-803-1067. [DOI] [PubMed] [Google Scholar]
  42. Ron M. A., Acker W., Shaw G. K., Lishman W. A. Computerized tomography of the brain in chronic alcoholism: a Survey and follow-up study. Brain. 1982 Sep;105(Pt 3):497–514. doi: 10.1093/brain/105.3.497. [DOI] [PubMed] [Google Scholar]
  43. Runmarker B., Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993 Feb;116(Pt 1):117–134. doi: 10.1093/brain/116.1.117. [DOI] [PubMed] [Google Scholar]
  44. Sawlani V., Gupta R. K., Singh M. K., Kohli A. MRI demonstration of Wallerian degeneration in various intracranial lesions and its clinical implications. J Neurol Sci. 1997 Mar 10;146(2):103–108. doi: 10.1016/s0022-510x(96)00299-7. [DOI] [PubMed] [Google Scholar]
  45. Schwartz M., Creasey H., Grady C. L., DeLeo J. M., Frederickson H. A., Cutler N. R., Rapoport S. I. Computed tomographic analysis of brain morphometrics in 30 healthy men, aged 21 to 81 years. Ann Neurol. 1985 Feb;17(2):146–157. doi: 10.1002/ana.410170208. [DOI] [PubMed] [Google Scholar]
  46. Simon J. H., Schiffer R. B., Rudick R. A., Herndon R. M. Quantitative determination of MS-induced corpus callosum atrophy in vivo using MR imaging. AJNR Am J Neuroradiol. 1987 Jul-Aug;8(4):599–604. [PMC free article] [PubMed] [Google Scholar]
  47. Sipe J. C., Knobler R. L., Braheny S. L., Rice G. P., Panitch H. S., Oldstone M. B. A neurologic rating scale (NRS) for use in multiple sclerosis. Neurology. 1984 Oct;34(10):1368–1372. doi: 10.1212/wnl.34.10.1368. [DOI] [PubMed] [Google Scholar]
  48. Stevenson V. L., Leary S. M., Losseff N. A., Parker G. J., Barker G. J., Husmani Y., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in MS: a longitudinal study. Neurology. 1998 Jul;51(1):234–238. doi: 10.1212/wnl.51.1.234. [DOI] [PubMed] [Google Scholar]
  49. Thorpe J. W., Kidd D., Kendall B. E., Tofts P. S., Barker G. J., Thompson A. J., MacManus D. G., McDonald W. I., Miller D. H. Spinal cord MRI using multi-array coils and fast spin echo. I. Technical aspects and findings in healthy adults. Neurology. 1993 Dec;43(12):2625–2631. doi: 10.1212/wnl.43.12.2625. [DOI] [PubMed] [Google Scholar]
  50. Thorpe J. W., Kidd D., Moseley I. F., Kenndall B. E., Thompson A. J., MacManus D. G., McDonald W. I., Miller D. H. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology. 1996 Feb;46(2):373–378. doi: 10.1212/wnl.46.2.373. [DOI] [PubMed] [Google Scholar]
  51. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29;338(5):278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  52. van Walderveen M. A., Barkhof F., Hommes O. R., Polman C. H., Tobi H., Frequin S. T., Valk J. Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology. 1995 Sep;45(9):1684–1690. doi: 10.1212/wnl.45.9.1684. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES