Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Nov;63(11):4448–4455. doi: 10.1128/iai.63.11.4448-4455.1995

The 46-kilodalton-hemolysin gene from Treponema denticola encodes a novel hemolysin homologous to aminotransferases.

L Chu 1, A Burgum 1, D Kolodrubetz 1, S C Holt 1
PMCID: PMC173633  PMID: 7591084

Abstract

The 46-kDa hemolysin produced by Treponema denticola may be involved in the etiology of periodontitis. In order to initiate a genetic analysis of the role of this protein in disease, its gene has been cloned. Synthetic oligonucleotides, designed on the basis of the previously reported amino-terminal amino acid sequence of the 45-kDa hemolysin, were used as primers in a PCR to amplify part of the hemolysin (hly) gene. This PCR product was then used to clone the entire hly gene from libraries of T. denticola genomic DNA. Constructs containing the entire cloned region on plasmids in Escherichia coli produced both hemolysis and hemoxidation activities either on sheep blood agar plates or in liquid assays. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis revealed that the constructs synthesized a protein with molecular size of about 46 kDa which was reactive with anti-T. denticola hemolysin. Nucleotide sequence analysis indicated that the largest open reading frame could encode a protein with a calculated molecular size of 46.2 kDa. The first 31 amino acids encoded by this open reading frame were identical to the experimentally determined amino-terminal sequence of the 45-kDa hemolysin. These results indicate that the entire hly gene has been cloned. The deduced amino acid sequence of the T. denticola hly gene is homologous (23 to 37% identity) to those of proteins that are members of a family of pyridoxal-phosphate-dependent aminotransferases. This suggests that the 46-kDa hemolysin may be related to an aminotransferase and have a novel mechanism of hemolysis. However, the functional aspects of this relationship remain to be investigated.

Full Text

The Full Text of this article is available as a PDF (932.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage G. C., Dickinson W. R., Jenderseck R. S., Levine S. M., Chambers D. W. Relationship between the percentage of subgingival spirochetes and the severity of periodontal disease. J Periodontol. 1982 Sep;53(9):550–556. doi: 10.1902/jop.1982.53.9.550. [DOI] [PubMed] [Google Scholar]
  2. Beauchamp R. O., Jr, Bus J. S., Popp J. A., Boreiko C. J., Andjelkovich D. A. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol. 1984;13(1):25–97. doi: 10.3109/10408448409029321. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Döbereiner A., Ludwig A., Goebel W. Haemolysin of Escherichia coli: comparison of pore-forming properties between chromosome and plasmid-encoded haemolysins. FEMS Microbiol Immunol. 1992 Sep;5(1-3):55–62. doi: 10.1111/j.1574-6968.1992.tb05887.x. [DOI] [PubMed] [Google Scholar]
  4. Chu L., Holt S. C. Purification and characterization of a 45 kDa hemolysin from Treponema denticola ATCC 35404. Microb Pathog. 1994 Mar;16(3):197–212. doi: 10.1006/mpat.1994.1020. [DOI] [PubMed] [Google Scholar]
  5. Chu L., Kennell W., Holt S. C. Characterization of hemolysis and hemoxidation activities by Treponema denticola. Microb Pathog. 1994 Mar;16(3):183–195. doi: 10.1006/mpat.1994.1019. [DOI] [PubMed] [Google Scholar]
  6. Chu L., Song M., Holt S. C. Effect of iron regulation on expression and hemin-binding function of outer-sheath proteins from Treponema denticola. Microb Pathog. 1994 May;16(5):321–335. doi: 10.1006/mpat.1994.1033. [DOI] [PubMed] [Google Scholar]
  7. Cowell J. L., Grushoff-Kosyk P. S., Bernheimer A. W. Purification of cereolysin and the electrophoretic separation of the active (reduced) and inactive (oxidized) forms of the purified toxin. Infect Immun. 1976 Jul;14(1):144–154. doi: 10.1128/iai.14.1.144-154.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doolittle R. F. Similar amino acid sequences: chance or common ancestry? Science. 1981 Oct 9;214(4517):149–159. doi: 10.1126/science.7280687. [DOI] [PubMed] [Google Scholar]
  9. Geoffroy C., Mengaud J., Alouf J. E., Cossart P. Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol. 1990 Dec;172(12):7301–7305. doi: 10.1128/jb.172.12.7301-7305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B. S., Stormo G. Translational initiation in prokaryotes. Annu Rev Microbiol. 1981;35:365–403. doi: 10.1146/annurev.mi.35.100181.002053. [DOI] [PubMed] [Google Scholar]
  11. Haque A., Sugimoto N., Horiguchi Y., Okabe T., Miyata T., Iwanaga S., Matsuda M. Production, purification, and characterization of botulinolysin, a thiol-activated hemolysin of Clostridium botulinum. Infect Immun. 1992 Jan;60(1):71–78. doi: 10.1128/iai.60.1.71-78.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holt S. C., Bramanti T. E. Factors in virulence expression and their role in periodontal disease pathogenesis. Crit Rev Oral Biol Med. 1991;2(2):177–281. doi: 10.1177/10454411910020020301. [DOI] [PubMed] [Google Scholar]
  13. Jacobs A. A., Loeffen P. L., van den Berg A. J., Storm P. K. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun. 1994 May;62(5):1742–1748. doi: 10.1093/benz/9780199773787.article.b00034458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolodrubetz D., Burgum A. Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J Biol Chem. 1990 Feb 25;265(6):3234–3239. [PubMed] [Google Scholar]
  15. LEAHY T., SMITH R. Notes on methemoglobin determination. Clin Chem. 1960 Apr;6:148–152. [PubMed] [Google Scholar]
  16. LISTGARTEN M. A. ELECTRON MICROSCOPIC OBSERVATIONS ON THE BACTERIAL FLORA OF ACUTE NECROTIZING ULCERATIVE GINGIVITIS. J Periodontol. 1965 Jul-Aug;36:328–339. doi: 10.1902/jop.1965.36.4.328. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Listgarten M. A., Levin S. Positive correlation between the proportions of subgingival spirochetes and motile bacteria and susceptibility of human subjects to periodontal deterioration. J Clin Periodontol. 1981 Apr;8(2):122–138. doi: 10.1111/j.1600-051x.1981.tb02352.x. [DOI] [PubMed] [Google Scholar]
  19. Maltha J. C., Mikx F. H., Kuijpers F. J. Necrotizing ulcerative gingivitis in beagle dogs. III. Distribution of spirochetes in interdental gingival tissue. J Periodontal Res. 1985 Sep;20(5):522–531. doi: 10.1111/j.1600-0765.1985.tb00836.x. [DOI] [PubMed] [Google Scholar]
  20. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  21. Mehta P. K., Christen P. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products. Eur J Biochem. 1993 Jan 15;211(1-2):373–376. doi: 10.1111/j.1432-1033.1993.tb19907.x. [DOI] [PubMed] [Google Scholar]
  22. Mehta P. K., Hale T. I., Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. Eur J Biochem. 1989 Dec 8;186(1-2):249–253. doi: 10.1111/j.1432-1033.1989.tb15202.x. [DOI] [PubMed] [Google Scholar]
  23. Menestrina G., Moser C., Pellet S., Welch R. Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology. 1994 Feb 28;87(1-3):249–267. doi: 10.1016/0300-483x(94)90254-2. [DOI] [PubMed] [Google Scholar]
  24. Mikx F. H. Comparison of peptidase, glycosidase and esterase activities of oral and non-oral Treponema species. J Gen Microbiol. 1991 Jan;137(1):63–68. doi: 10.1099/00221287-137-1-63. [DOI] [PubMed] [Google Scholar]
  25. Mikx F. H., Maltha J. C., van Campen G. J. Spirochetes in early lesions of necrotizing ulcerative gingivitis experimentally induced in beagles. Oral Microbiol Immunol. 1990 Apr;5(2):86–89. doi: 10.1111/j.1399-302x.1990.tb00233.x. [DOI] [PubMed] [Google Scholar]
  26. Moayeri M., Welch R. A. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun. 1994 Oct;62(10):4124–4134. doi: 10.1128/iai.62.10.4124-4134.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murray P. A., Winkler J. R., Peros W. J., French C. K., Lippke J. A. DNA probe detection of periodontal pathogens in HIV-associated periodontal lesions. Oral Microbiol Immunol. 1991 Feb;6(1):34–40. doi: 10.1111/j.1399-302x.1991.tb00449.x. [DOI] [PubMed] [Google Scholar]
  28. Ohta K., Makinen K. K., Loesche W. J. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun. 1986 Jul;53(1):213–220. doi: 10.1128/iai.53.1.213-220.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Persson S. Hydrogen sulfide and methyl mercaptan in periodontal pockets. Oral Microbiol Immunol. 1992 Dec;7(6):378–379. doi: 10.1111/j.1399-302x.1992.tb00641.x. [DOI] [PubMed] [Google Scholar]
  30. Prigent D., Alouf J. E. Interaction of steptolysin O with sterols. Biochim Biophys Acta. 1976 Aug 16;443(2):288–300. doi: 10.1016/0005-2736(76)90511-3. [DOI] [PubMed] [Google Scholar]
  31. Que X. C., Kuramitsu H. K. Isolation and characterization of the Treponema denticola prtA gene coding for chymotrypsinlike protease activity and detection of a closely linked gene encoding PZ-PLGPA-hydrolyzing activity. Infect Immun. 1990 Dec;58(12):4099–4105. doi: 10.1128/iai.58.12.4099-4105.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reidl J., Boos W. The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. J Bacteriol. 1991 Aug;173(15):4862–4876. doi: 10.1128/jb.173.15.4862-4876.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Riviere G. R., Elliot K. S., Adams D. F., Simonson L. G., Forgas L. B., Nilius A. M., Lukehart S. A. Relative proportions of pathogen-related oral spirochetes (PROS) and Treponema denticola in supragingival and subgingival plaque from patients with periodontitis. J Periodontol. 1992 Feb;63(2):131–136. doi: 10.1902/jop.1992.63.2.131. [DOI] [PubMed] [Google Scholar]
  34. Riviere G. R., Weisz K. S., Adams D. F., Thomas D. D. Pathogen-related oral spirochetes from dental plaque are invasive. Infect Immun. 1991 Oct;59(10):3377–3380. doi: 10.1128/iai.59.10.3377-3380.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rizzo A. A. The possible role of hydrogen sulfide in human periodontal disease. I. Hydrogen sulfide production in periodontal pockets. Periodontics. 1967 Sep-Oct;5(5):233–236. [PubMed] [Google Scholar]
  36. Rossol I., Pühler A. The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. J Bacteriol. 1992 May;174(9):2968–2977. doi: 10.1128/jb.174.9.2968-2977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schenkein H. A., Berry C. R. Activation of complement by Treponema denticola. J Dent Res. 1991 Feb;70(2):107–110. doi: 10.1177/00220345910700020201. [DOI] [PubMed] [Google Scholar]
  39. Scott D., Siboo I. R., Chan E. C., Klitorinos A., Siboo R. Binding of hemin and congo red by oral hemolytic spirochetes. Oral Microbiol Immunol. 1993 Aug;8(4):245–250. doi: 10.1111/j.1399-302x.1993.tb00568.x. [DOI] [PubMed] [Google Scholar]
  40. Simonson L. G., Goodman C. H., Bial J. J., Morton H. E. Quantitative relationship of Treponema denticola to severity of periodontal disease. Infect Immun. 1988 Apr;56(4):726–728. doi: 10.1128/iai.56.4.726-728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Simonson L. G., Goodman C. H., Morton H. E. Quantitative immunoassay of Treponema denticola serovar C in adult periodontitis. J Clin Microbiol. 1990 Jul;28(7):1493–1496. doi: 10.1128/jcm.28.7.1493-1496.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sung M. H., Tanizawa K., Tanaka H., Kuramitsu S., Kagamiyama H., Hirotsu K., Okamoto A., Higuchi T., Soda K. Thermostable aspartate aminotransferase from a thermophilic Bacillus species. Gene cloning, sequence determination, and preliminary x-ray characterization. J Biol Chem. 1991 Feb 5;266(4):2567–2572. [PubMed] [Google Scholar]
  43. Syed S. A., Mäkinen K. K., Mäkinen P. L., Chen C. Y., Muhammad Z. Proteolytic and oxidoreductase activity of Treponema denticola ATCC 35405 grown in an aerobic and anaerobic gaseous environment. Res Microbiol. 1993 May;144(4):317–326. doi: 10.1016/0923-2508(93)90016-u. [DOI] [PubMed] [Google Scholar]
  44. Trach K. A., Hoch J. A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol Microbiol. 1993 Apr;8(1):69–79. doi: 10.1111/j.1365-2958.1993.tb01204.x. [DOI] [PubMed] [Google Scholar]
  45. Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. J. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun. 1987 May;55(5):1184–1189. doi: 10.1128/iai.55.5.1184-1189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weinberg A., Holt S. C. Interaction of Treponema denticola TD-4, GM-1, and MS25 with human gingival fibroblasts. Infect Immun. 1990 Jun;58(6):1720–1729. doi: 10.1128/iai.58.6.1720-1729.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yang R., Lis J., Wu R. Elution of DNA from agarose gels after electrophoresis. Methods Enzymol. 1979;68:176–182. doi: 10.1016/0076-6879(79)68012-6. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES