Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Nov;63(11):4489–4494. doi: 10.1128/iai.63.11.4489-4494.1995

Human and rat macrophages mediate fungistatic activity against Rhizopus species differently: in vitro and ex vivo studies.

P G Jorens 1, J R Boelaert 1, V Halloy 1, R Zamora 1, Y J Schneider 1, A G Herman 1
PMCID: PMC173639  PMID: 7591090

Abstract

Both rat alveolar macrophages and a human macrophages cell line with characteristics of human tissue (e.g., alveolar) macrophages (THP-1) were found to inhibit the germination of Rhizopus spores. However, the conditions under which fungistatic activity occurs are different for these two cell types. The inhibition of Rhizopus spore germination by rat alveolar macrophages requires the activation of macrophages and the presence of serum and L-arginine. During rat alveolar macrophage-mediated fungistatic activity, L-arginine is oxidized to nitric. Human macrophage-mediated fungistatic activity is similar to that mediated by rat macrophages in terms of the serum requirement, but it does not require L-arginine. Human macrophages did not produce any nitrite detectable by the colorimetric assay. Their ability to inhibit germination was enhanced by the combination of endotoxin and gamma interferon. The inhibition of Rhizopus spore germination by rat alveolar macrophages is thus mediated by the generation of nitric oxide, whereas the mechanism of similar inhibition by human macrophages remains poorly understood. Serum samples from diabetic rats as well as from patients with diabetes or uremia decreased the inhibitory effect of macrophages on spore germination. Dialysis of the serum samples against a buffered salt solution antagonized this phenomenon, indicating that a low-molecular-weight factor in the sera of patients with diabetes or uremia may modulate local antifungal defense mechanisms. The absence of L-arginine-dependent nitrogen oxidation in human macrophages, compared with its presence in rat alveolar macrophages, under conditions during which fungistatic activity occurs suggests that this phenomenon is species specific.

Full Text

The Full Text of this article is available as a PDF (498.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade J., Conde M., Sobrino F., Bedoya F. J. Activation of peritoneal macrophages during the prediabetic phase in low-dose streptozotocin-treated mice. FEBS Lett. 1993 Jul 19;327(1):32–34. doi: 10.1016/0014-5793(93)81033-v. [DOI] [PubMed] [Google Scholar]
  2. Boelaert J. R., Fenves A. Z., Coburn J. W. Deferoxamine therapy and mucormycosis in dialysis patients: report of an international registry. Am J Kidney Dis. 1991 Dec;18(6):660–667. doi: 10.1016/s0272-6386(12)80606-8. [DOI] [PubMed] [Google Scholar]
  3. Boelaert J. R., de Locht M., Van Cutsem J., Kerrels V., Cantinieaux B., Verdonck A., Van Landuyt H. W., Schneider Y. J. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest. 1993 May;91(5):1979–1986. doi: 10.1172/JCI116419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cameron M. L., Granger D. L., Weinberg J. B., Kozumbo W. J., Koren H. S. Human alveolar and peritoneal macrophages mediate fungistasis independently of L-arginine oxidation to nitrite or nitrate. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1313–1319. doi: 10.1164/ajrccm/142.6_Pt_1.1313. [DOI] [PubMed] [Google Scholar]
  5. Cenci E., Romani L., Mencacci A., Spaccapelo R., Schiaffella E., Puccetti P., Bistoni F. Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur J Immunol. 1993 May;23(5):1034–1038. doi: 10.1002/eji.1830230508. [DOI] [PubMed] [Google Scholar]
  6. Denis M. Tumor necrosis factor and granulocyte macrophage-colony stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Leukoc Biol. 1991 Apr;49(4):380–387. doi: 10.1002/jlb.49.4.380. [DOI] [PubMed] [Google Scholar]
  7. Diamond R. D. Fungal surfaces: effects of interactions with phagocytic cells. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S428–S431. doi: 10.1093/cid/10.supplement_2.s428. [DOI] [PubMed] [Google Scholar]
  8. Dumarey C. H., Labrousse V., Rastogi N., Vargaftig B. B., Bachelet M. Selective Mycobacterium avium-induced production of nitric oxide by human monocyte-derived macrophages. J Leukoc Biol. 1994 Jul;56(1):36–40. doi: 10.1002/jlb.56.1.36. [DOI] [PubMed] [Google Scholar]
  9. Granade T. C., Hehmann M. F., Artis W. M. Monitoring of filamentous fungal growth by in situ microspectrophotometry, fragmented mycelium absorbance density, and 14C incorporation: alternatives to mycelial dry weight. Appl Environ Microbiol. 1985 Jan;49(1):101–108. doi: 10.1128/aem.49.1.101-108.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Granger D. L., Hibbs J. B., Jr, Perfect J. R., Durack D. T. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages. J Clin Invest. 1990 Jan;85(1):264–273. doi: 10.1172/JCI114422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hasan K., Heesen B. J., Corbett J. A., McDaniel M. L., Chang K., Allison W., Wolffenbuttel B. H., Williamson J. R., Tilton R. G. Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol. 1993 Nov 2;249(1):101–106. doi: 10.1016/0014-2999(93)90667-7. [DOI] [PubMed] [Google Scholar]
  12. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  13. Jorens P. G., Van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. L-arginine-dependent production of nitrogen oxides by rat pulmonary macrophages. Eur J Pharmacol. 1991 Aug 6;200(2-3):205–209. doi: 10.1016/0014-2999(91)90573-9. [DOI] [PubMed] [Google Scholar]
  14. Jorens P. G., van Overveld F. J., Bult H., Vermeire P. A., Herman A. G. Pterins inhibit nitric oxide synthase activity in rat alveolar macrophages. Br J Pharmacol. 1992 Dec;107(4):1088–1091. doi: 10.1111/j.1476-5381.1992.tb13411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lacraz S., Dayer J. M., Nicod L., Welgus H. G. 1,25-dihydroxyvitamin D3 dissociates production of interstitial collagenase and 92-kDa gelatinase in human mononuclear phagocytes. J Biol Chem. 1994 Mar 4;269(9):6485–6490. [PubMed] [Google Scholar]
  16. Lane T. E., Otero G. C., Wu-Hsieh B. A., Howard D. H. Expression of inducible nitric oxide synthase by stimulated macrophages correlates with their antihistoplasma activity. Infect Immun. 1994 Apr;62(4):1478–1479. doi: 10.1128/iai.62.4.1478-1479.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MacAllister R. J., Whitley G. S., Vallance P. Effects of guanidino and uremic compounds on nitric oxide pathways. Kidney Int. 1994 Mar;45(3):737–742. doi: 10.1038/ki.1994.98. [DOI] [PubMed] [Google Scholar]
  18. Meyer K. C., Cornwell R., Carlin J. M., Powers C., Irizarry A., Byrne G. I., Borden E. C. Effects of interferons beta or gamma on neopterin biosynthesis and tryptophan degradation by human alveolar macrophages in vitro: synergy with lipopolysaccharide. Am J Respir Cell Mol Biol. 1992 Jun;6(6):639–646. doi: 10.1165/ajrcmb/6.6.639. [DOI] [PubMed] [Google Scholar]
  19. Murray H. W., Teitelbaum R. F. L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis. 1992 Mar;165(3):513–517. doi: 10.1093/infdis/165.3.513. [DOI] [PubMed] [Google Scholar]
  20. Muñoz-Fernández M. A., Fernández M. A., Fresno M. Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol Lett. 1992 Jun;33(1):35–40. doi: 10.1016/0165-2478(92)90090-b. [DOI] [PubMed] [Google Scholar]
  21. Nichol C. A., Smith G. K., Duch D. S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 1985;54:729–764. doi: 10.1146/annurev.bi.54.070185.003501. [DOI] [PubMed] [Google Scholar]
  22. Schmidt H. H., Nau H., Wittfoht W., Gerlach J., Prescher K. E., Klein M. M., Niroomand F., Böhme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988 Sep 13;154(2):213–216. doi: 10.1016/0014-2999(88)90101-x. [DOI] [PubMed] [Google Scholar]
  23. Schneemann M., Schoedon G., Hofer S., Blau N., Guerrero L., Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. doi: 10.1093/infdis/167.6.1358. [DOI] [PubMed] [Google Scholar]
  24. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sugar A. M. Mucormycosis. Clin Infect Dis. 1992 Mar;14 (Suppl 1):S126–S129. doi: 10.1093/clinids/14.supplement_1.s126. [DOI] [PubMed] [Google Scholar]
  26. Van Cutsem J., Fransen J., Janssen P. A. Experimental zygomycosis due to Rhizopus spp. infection by various routes in guinea-pigs, rats and mice. Mycoses. 1988 Nov;31(11):563–578. doi: 10.1111/j.1439-0507.1988.tb04410.x. [DOI] [PubMed] [Google Scholar]
  27. Waldorf A. R., Levitz S. M., Diamond R. D. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus. J Infect Dis. 1984 Nov;150(5):752–760. doi: 10.1093/infdis/150.5.752. [DOI] [PubMed] [Google Scholar]
  28. Waldorf A. R., Ruderman N., Diamond R. D. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus. J Clin Invest. 1984 Jul;74(1):150–160. doi: 10.1172/JCI111395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger R., Yim J. J., Wachter H. Biochemistry and function of pteridine synthesis in human and murine macrophages. Pathobiology. 1991;59(4):276–279. doi: 10.1159/000163662. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES