Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Jul;67(1):51–58. doi: 10.1136/jnnp.67.1.51

Generation of scalp discharges in temporal lobe epilepsy as suggested by intraoperative electrocorticographic recordings

J Torre 1, G Alarcon 1, C Binnie 1, J Seoane 1, J Juler 1, C Guy 1, C Polkey 1
PMCID: PMC1736410  PMID: 10369822

Abstract

OBJECTIVES—To study the variability, topography, polarity, duration, and incidence of interictal epileptiform discharges (EDs) in the scalp EEG and electrocorticogram (ECoG) from 16 patients with temporal lobe epilepsy who underwent surgical treatment.
METHODS—Preoperative scalp EEGs during quinalbarbitone induced sleep were compared with preresection ECoGs obtained under general anaesthesia. The analysis was based on the initial ECoG record obtained before activation by intravenous thiopentone, and the EEG during stages I and II of sleep.
RESULTS—On the scalp, 15 patients had a single discharge pattern, spikes were predominantly negative, EDs were of largest amplitude at the anterior temporal electrode in 13 patients and mean discharge incidence was 4.0 (SD 4.2) discharges/min. In ECoG recordings, nine patients had two independent ECoG patterns, the polarity of spikes was negative, positive-negative, or positive, the site of maximal amplitude varied greatly between subjects, discharge incidence was 7.3 (SD 3.9) discharges/min. There was no relation between the topography of the largest spikes on the scalp and in the ECoG. In 14 patients, scalp spikes showed statistically significant longer duration on the scalp than in the ECoG. In seven patients who had frequent widespread ECoG discharges, averaging spikes across ECoG channels generated spiky patterns of duration similar to that of scalp spikes.
CONCLUSION—It seems that, in temporal lobe epilepsy, scalp discharges originate from widespread ECoG discharges and tend to produce a stereotyped pattern on the scalp with largest amplitudes at the anterior temporal electrodes. This is probably due to local anatomical peculiarities in the brain coverings, such as skull discontinuities, rather than to the location of neuronal generators within the temporal lobe. Due to spatiotemporal averaging, widespread cortical discharges which become asynchronous during propagation appear with increased duration and blunted waveform in the EEG, whereas sharply localised phenomena such as positive focal spikes are not recorded from the scalp.



Full Text

The Full Text of this article is available as a PDF (168.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalogr Clin Neurophysiol. 1974 Nov;37(5):538–548. doi: 10.1016/0013-4694(74)90099-6. [DOI] [PubMed] [Google Scholar]
  2. ABRAHAM K., MARSAN C. A. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr Clin Neurophysiol. 1958 Aug;10(3):447–461. doi: 10.1016/0013-4694(58)90006-3. [DOI] [PubMed] [Google Scholar]
  3. Alarcon G., Garcia Seoane J. J., Binnie C. D., Martin Miguel M. C., Juler J., Polkey C. E., Elwes R. D., Ortiz Blasco J. M. Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain. 1997 Dec;120(Pt 12):2259–2282. doi: 10.1093/brain/120.12.2259. [DOI] [PubMed] [Google Scholar]
  4. Alarcon G., Guy C. N., Binnie C. D., Walker S. R., Elwes R. D., Polkey C. E. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry. 1994 Apr;57(4):435–449. doi: 10.1136/jnnp.57.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Binnie C. D., Marston D., Polkey C. E., Amin D. Distribution of temporal spikes in relation to the sphenoidal electrode. Electroencephalogr Clin Neurophysiol. 1989 Nov;73(5):403–409. doi: 10.1016/0013-4694(89)90089-8. [DOI] [PubMed] [Google Scholar]
  6. COOPER R., WINTER A. L., CROW H. J., WALTER W. G. COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN. Electroencephalogr Clin Neurophysiol. 1965 Feb;18:217–228. doi: 10.1016/0013-4694(65)90088-x. [DOI] [PubMed] [Google Scholar]
  7. Emerson R. G., Turner C. A., Pedley T. A., Walczak T. S., Forgione M. Propagation patterns of temporal spikes. Electroencephalogr Clin Neurophysiol. 1995 May;94(5):338–348. doi: 10.1016/0013-4694(94)00316-d. [DOI] [PubMed] [Google Scholar]
  8. Gambardella A., Pucci F., La Piane E., Messina D., Russo C., Zappia M., Oliveri R. L., Quattrone A., Aguglia U. Usefulness of latero-orbital electrodes in detecting interictal epileptiform activity--a study of 60 patients with complex partial seizures. Electroencephalogr Clin Neurophysiol. 1998 Aug;107(2):174–176. doi: 10.1016/s0013-4694(98)00049-2. [DOI] [PubMed] [Google Scholar]
  9. Geddes L. A., Baker L. E. The specific resistance of biological material--a compendium of data for the biomedical engineer and physiologist. Med Biol Eng. 1967 May;5(3):271–293. doi: 10.1007/BF02474537. [DOI] [PubMed] [Google Scholar]
  10. Geselowitz D. B. On bioelectric potentials in an inhomogeneous volume conductor. Biophys J. 2008 Dec 31;7(1):1–11. doi: 10.1016/S0006-3495(67)86571-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985 Oct;2(4):327–354. doi: 10.1097/00004691-198510000-00002. [DOI] [PubMed] [Google Scholar]
  12. Kanner A. M., Jones J. C. When do sphenoidal electrodes yield additional data to that obtained with antero-temporal electrodes? Electroencephalogr Clin Neurophysiol. 1997 Jan;102(1):12–19. doi: 10.1016/s0013-4694(96)95217-7. [DOI] [PubMed] [Google Scholar]
  13. Kosterich J. D., Foster K. R., Pollack S. R. Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans Biomed Eng. 1983 Feb;30(2):81–86. doi: 10.1109/tbme.1983.325201. [DOI] [PubMed] [Google Scholar]
  14. Krauss G. L., Lesser R. P., Fisher R. S., Arroyo S. Anterior "cheek" electrodes are comparable to sphenoidal electrodes for the identification of ictal activity. Electroencephalogr Clin Neurophysiol. 1992 Dec;83(6):333–338. doi: 10.1016/0013-4694(92)90068-s. [DOI] [PubMed] [Google Scholar]
  15. Law S. K. Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr. 1993 Winter;6(2):99–109. doi: 10.1007/BF01191074. [DOI] [PubMed] [Google Scholar]
  16. Margerison J. H., Binnie C. D., McCaul I. R. Electroencephalographic signs employed in the location of ruptured intracranial arterial aneurysms. Electroencephalogr Clin Neurophysiol. 1970 Mar;28(3):296–306. doi: 10.1016/0013-4694(70)90166-5. [DOI] [PubMed] [Google Scholar]
  17. SILVERMAN D. The anterior temporal electrode and the ten-twenty system. Electroencephalogr Clin Neurophysiol. 1960 Aug;12:735–737. doi: 10.1016/0013-4694(60)90119-x. [DOI] [PubMed] [Google Scholar]
  18. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987 Jan;32(1):11–22. doi: 10.1088/0031-9155/32/1/004. [DOI] [PubMed] [Google Scholar]
  19. van den Broek S. P., Reinders F., Donderwinkel M., Peters M. J. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998 Jun;106(6):522–534. doi: 10.1016/s0013-4694(97)00147-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES