Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Nov;63(11):4524–4527. doi: 10.1128/iai.63.11.4524-4527.1995

Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg.

M M Vickerman 1, M C Sulavik 1, D B Clewell 1
PMCID: PMC173645  PMID: 7591096

Abstract

The Streptococcus gordonii Challis glucosyltransferase structural gene, gtfG, is positively regulated by the upstream gene, rgg, the only described gtf regulatory determinant in oral streptococci. Southern hybridization analyses indicated that rgg-like and gtfG-like determinants were present on the same HindIII fragment in strains of S. gordonii, Streptococcus sanguis, and Streptococcus oralis, whereas no rgg-like determinants were detected in mutans streptococci, Streptococcus mitis, and Streptococcus salivarius.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ferretti J. J., Gilpin M. L., Russell R. R. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol. 1987 Sep;169(9):4271–4278. doi: 10.1128/jb.169.9.4271-4278.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frandsen E. V., Pedrazzoli V., Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol. 1991 Jun;6(3):129–133. doi: 10.1111/j.1399-302x.1991.tb00466.x. [DOI] [PubMed] [Google Scholar]
  3. Funane K., Shiraiwa M., Hashimoto K., Ichishima E., Kobayashi M. An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications. Biochemistry. 1993 Dec 14;32(49):13696–13702. doi: 10.1021/bi00212a039. [DOI] [PubMed] [Google Scholar]
  4. Geller B. L., Ivey R. G., Trempy J. E., Hettinger-Smith B. Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2. J Bacteriol. 1993 Sep;175(17):5510–5519. doi: 10.1128/jb.175.17.5510-5519.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giffard P. M., Simpson C. L., Milward C. P., Jacques N. A. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol. 1991 Nov;137(11):2577–2593. doi: 10.1099/00221287-137-11-2577. [DOI] [PubMed] [Google Scholar]
  6. Gilmore K. S., Russell R. R., Ferretti J. J. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun. 1990 Aug;58(8):2452–2458. doi: 10.1128/iai.58.8.2452-2458.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
  8. Grahame D. A., Mayer R. M. The origin and composition of multiple forms of dextransucrase from Streptococcus sanguis. Biochim Biophys Acta. 1984 Apr 27;786(1-2):42–48. doi: 10.1016/0167-4838(84)90151-1. [DOI] [PubMed] [Google Scholar]
  9. Honda O., Kato C., Kuramitsu H. K. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol. 1990 Oct;136(10):2099–2105. doi: 10.1099/00221287-136-10-2099. [DOI] [PubMed] [Google Scholar]
  10. Hudson M. C., Curtiss R., 3rd Regulation of expression of Streptococcus mutans genes important to virulence. Infect Immun. 1990 Feb;58(2):464–470. doi: 10.1128/iai.58.2.464-470.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ike Y., Craig R. A., White B. A., Yagi Y., Clewell D. B. Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5369–5373. doi: 10.1073/pnas.80.17.5369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacob A. E., Hobbs S. J. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol. 1974 Feb;117(2):360–372. doi: 10.1128/jb.117.2.360-372.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolenbrander P. E., London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol. 1993 Jun;175(11):3247–3252. doi: 10.1128/jb.175.11.3247-3252.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P. Molecular cloning in the Streptococci. Basic Life Sci. 1982;19:195–210. doi: 10.1007/978-1-4684-4142-0_17. [DOI] [PubMed] [Google Scholar]
  16. McNee S. G., Geddes D. A., Weetman D. A., Sweeney D., Beeley J. A. Effect of extracellular polysaccharides on diffusion of NaF and [14C]-sucrose in human dental plaque and in sediments of the bacterium Streptococcus sanguis 804 (NCTC 10904). Arch Oral Biol. 1982;27(11):981–986. doi: 10.1016/0003-9969(82)90107-8. [DOI] [PubMed] [Google Scholar]
  17. Mooser G., Hefta S. A., Paxton R. J., Shively J. E., Lee T. D. Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J Biol Chem. 1991 May 15;266(14):8916–8922. [PubMed] [Google Scholar]
  18. Russell R. R. The application of molecular genetics to the microbiology of dental caries. Caries Res. 1994;28(2):69–82. doi: 10.1159/000261625. [DOI] [PubMed] [Google Scholar]
  19. Russell R. R. Use of triton X-100 to overcome the inhibition of fructosyltransferase by SDS. Anal Biochem. 1979 Aug;97(1):173–175. doi: 10.1016/0003-2697(79)90342-7. [DOI] [PubMed] [Google Scholar]
  20. Sato S., Inoue M., Hanada N., Aizawa Y., Isobe Y., Katayama T. DNA sequence of the glucosyltransferase gene of serotype d Streptococcus sobrinus. DNA Seq. 1993;4(1):19–27. doi: 10.3109/10425179309015618. [DOI] [PubMed] [Google Scholar]
  21. Simpson C. L., Giffard P. M., Jacques N. A. Streptococcus salivarius ATCC 25975 possesses at least two genes coding for primer-independent glucosyltransferases. Infect Immun. 1995 Feb;63(2):609–621. doi: 10.1128/iai.63.2.609-621.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  23. Sulavik M. C., Tardif G., Clewell D. B. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol. 1992 Jun;174(11):3577–3586. doi: 10.1128/jb.174.11.3577-3586.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tardif G., Sulavik M. C., Jones G. W., Clewell D. B. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun. 1989 Dec;57(12):3945–3948. doi: 10.1128/iai.57.12.3945-3948.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ueda S., Shiroza T., Kuramitsu H. K. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene. 1988 Sep 15;69(1):101–109. doi: 10.1016/0378-1119(88)90382-4. [DOI] [PubMed] [Google Scholar]
  26. Van Houte J., Russo J., Prostak K. S. Increased pH-lowering ability of Streptococcus mutans cell masses associated with extracellular glucan-rich matrix material and the mechanisms involved. J Dent Res. 1989 Mar;68(3):451–459. doi: 10.1177/00220345890680030301. [DOI] [PubMed] [Google Scholar]
  27. Vickerman M. M., Clewell D. B., Jones G. W. Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii. Appl Environ Microbiol. 1991 Dec;57(12):3648–3651. doi: 10.1128/aem.57.12.3648-3651.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vickerman M. M., Clewell D. B., Jones G. W. Sucrose-promoted accumulation of growing glucosyltransferase variants of Streptococcus gordonii on hydroxyapatite surfaces. Infect Immun. 1991 Oct;59(10):3523–3530. doi: 10.1128/iai.59.10.3523-3530.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vickerman M. M., Jones G. W. Sucrose-dependent accumulation of oral streptococci and their adhesion-defective mutants on saliva-coated hydroxyapatite. Oral Microbiol Immunol. 1995 Jun;10(3):175–182. doi: 10.1111/j.1399-302x.1995.tb00139.x. [DOI] [PubMed] [Google Scholar]
  30. Wanda S. Y., Curtiss R., 3rd Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene. J Bacteriol. 1994 Jul;176(13):3839–3850. doi: 10.1128/jb.176.13.3839-3850.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wexler D. L., Hudson M. C., Burne R. A. Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Immun. 1993 Apr;61(4):1259–1267. doi: 10.1128/iai.61.4.1259-1267.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES