Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Aug;67(2):163–168. doi: 10.1136/jnnp.67.2.163

Basal forebrain amnesia: does the nucleus accumbens contribute to human memory?

G Goldenberg 1, U Schuri 1, O Gromminger 1, U Arnold 1
PMCID: PMC1736481  PMID: 10406982

Abstract

OBJECTIVE—To analyse amnesia caused by basal forebrain lesions.
METHODS—A single case study of a patient with amnesia after bleeding into the anterior portion of the left basal ganglia. Neuropsychological examination included tests of attention, executive function, working memory, recall, and recognition of verbal and non-verbal material, and recall from remote semantic and autobiographical memory. The patient's MRI and those of other published cases of basal forebrain amnesia were reviewed to specify which structures within the basal forebrain are crucial for amnesia.
RESULTS—Attention and executive function were largely intact. There was anterograde amnesia for verbal material which affected free recall and recognition. With both modes of testing the patient produced many false positive responses and intrusions when lists of unrelated words had been memorised. However, he confabulated neither on story recall nor in day to day memory, nor in recall from remote memory. The lesion affected mainly the nucleus accumbens, but encroached on the inferior limb of the capsula interna and the most ventral portion of the nucleus caudatus and globus pallidus, and there was evidence of some atrophy of the head of the caudate nucleus. The lesion spared the nucleus basalis Meynert, the diagnonal band, and the septum, which are the sites of cholinergic cell concentrations.
CONCLUSIONS—It seems unlikely that false positive responses were caused by insufficient strategic control of memory retrieval. This speaks against a major role of the capsular lesion which might disconnect the prefrontal cortex from the thalamus. It is proposed that the lesion of the nucleus accumbens caused amnesia.



Full Text

The Full Text of this article is available as a PDF (107.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander G. E., DeLong M. R., Strick P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041. [DOI] [PubMed] [Google Scholar]
  2. Alheid G. F., Heimer L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience. 1988 Oct;27(1):1–39. doi: 10.1016/0306-4522(88)90217-5. [DOI] [PubMed] [Google Scholar]
  3. Annett L. E., McGregor A., Robbins T. W. The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res. 1989 Jan 1;31(3):231–242. doi: 10.1016/0166-4328(89)90005-3. [DOI] [PubMed] [Google Scholar]
  4. Bondi M. W., Kaszniak A. W., Rapcsak S. Z., Butters M. A. Implicit and explicit memory following anterior communicating artery aneurysm rupture. Brain Cogn. 1993 Jul;22(2):213–229. doi: 10.1006/brcg.1993.1035. [DOI] [PubMed] [Google Scholar]
  5. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi: 10.1007/BF00308809. [DOI] [PubMed] [Google Scholar]
  6. Clarke S., Assal G., Bogousslavsky J., Regli F., Townsend D. W., Leenders K. L., Blecic S. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry. 1994 Jan;57(1):27–34. doi: 10.1136/jnnp.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corkin S., Amaral D. G., González R. G., Johnson K. A., Hyman B. T. H. M.'s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci. 1997 May 15;17(10):3964–3979. doi: 10.1523/JNEUROSCI.17-10-03964.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coyle J. T., Price D. L., DeLong M. R. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983 Mar 11;219(4589):1184–1190. doi: 10.1126/science.6338589. [DOI] [PubMed] [Google Scholar]
  9. Damasio A. R., Graff-Radford N. R., Eslinger P. J., Damasio H., Kassell N. Amnesia following basal forebrain lesions. Arch Neurol. 1985 Mar;42(3):263–271. doi: 10.1001/archneur.1985.04060030081013. [DOI] [PubMed] [Google Scholar]
  10. DeLuca J. Cognitive dysfunction after aneurysm of the anterior communicating artery. J Clin Exp Neuropsychol. 1992 Nov;14(6):924–934. doi: 10.1080/01688639208402544. [DOI] [PubMed] [Google Scholar]
  11. Fibiger H. C. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci. 1991 Jun;14(6):220–223. doi: 10.1016/0166-2236(91)90117-d. [DOI] [PubMed] [Google Scholar]
  12. Fischer R. S., Alexander M. P., D'Esposito M., Otto R. Neuropsychological and neuroanatomical correlates of confabulation. J Clin Exp Neuropsychol. 1995 Feb;17(1):20–28. doi: 10.1080/13803399508406577. [DOI] [PubMed] [Google Scholar]
  13. Floresco S. B., Seamans J. K., Phillips A. G. Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behav Brain Res. 1996 Nov;81(1-2):163–171. doi: 10.1016/s0166-4328(96)00058-7. [DOI] [PubMed] [Google Scholar]
  14. Fukamachi A., Horikoshi T., Nagaseki Y., Sasaki H., Nukui H. Symmetrical bilateral low-density lesions in the areas of supply by Heubner's arteries after aneurysm surgery. Acta Neurochir (Wien) 1987;84(3-4):89–92. doi: 10.1007/BF01418830. [DOI] [PubMed] [Google Scholar]
  15. Gal G., Joel D., Gusak O., Feldon J., Weiner I. The effects of electrolytic lesion to the shell subterritory of the nucleus accumbens on delayed non-matching-to-sample and four-arm baited eight-arm radial-maze tasks. Behav Neurosci. 1997 Feb;111(1):92–103. doi: 10.1037//0735-7044.111.1.92. [DOI] [PubMed] [Google Scholar]
  16. Goldenberg G., Wimmer A., Maly J. Amnesic syndrome with a unilateral thalamic lesion: a case report. J Neurol. 1983;229(2):79–86. doi: 10.1007/BF00313445. [DOI] [PubMed] [Google Scholar]
  17. Hodges J. R., Patterson K. Is semantic memory consistently impaired early in the course of Alzheimer's disease? Neuroanatomical and diagnostic implications. Neuropsychologia. 1995 Apr;33(4):441–459. doi: 10.1016/0028-3932(94)00127-b. [DOI] [PubMed] [Google Scholar]
  18. Irle E., Wowra B., Kunert H. J., Hampl J., Kunze S. Memory disturbances following anterior communicating artery rupture. Ann Neurol. 1992 May;31(5):473–480. doi: 10.1002/ana.410310503. [DOI] [PubMed] [Google Scholar]
  19. Kopelman M. D., Wilson B. A., Baddeley A. D. The autobiographical memory interview: a new assessment of autobiographical and personal semantic memory in amnesic patients. J Clin Exp Neuropsychol. 1989 Oct;11(5):724–744. doi: 10.1080/01688638908400928. [DOI] [PubMed] [Google Scholar]
  20. Markowitsch H. J. Diencephalic amnesia: a reorientation towards tracts? Brain Res. 1988 Dec;472(4):351–370. doi: 10.1016/0006-8993(88)91226-7. [DOI] [PubMed] [Google Scholar]
  21. Markowitsch H. J., von Cramon D. Y., Hofmann E., Sick C. D., Kinzler P. Verbal memory deterioration after unilateral infarct of the internal capsule in an adolescent. Cortex. 1990 Dec;26(4):597–609. doi: 10.1016/s0010-9452(13)80309-7. [DOI] [PubMed] [Google Scholar]
  22. Mesulam M. M., Mufson E. J., Levey A. I., Wainer B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol. 1983 Feb 20;214(2):170–197. doi: 10.1002/cne.902140206. [DOI] [PubMed] [Google Scholar]
  23. Milner B. Interhemispheric differences in the localization of psychological processes in man. Br Med Bull. 1971 Sep;27(3):272–277. doi: 10.1093/oxfordjournals.bmb.a070866. [DOI] [PubMed] [Google Scholar]
  24. Morris M. K., Bowers D., Chatterjee A., Heilman K. M. Amnesia following a discrete basal forebrain lesion. Brain. 1992 Dec;115(Pt 6):1827–1847. doi: 10.1093/brain/115.6.1827. [DOI] [PubMed] [Google Scholar]
  25. Nelson H. E. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976 Dec;12(4):313–324. doi: 10.1016/s0010-9452(76)80035-4. [DOI] [PubMed] [Google Scholar]
  26. Parkin A. J., Rees J. E., Hunkin N. M., Rose P. E. Impairment of memory following discrete thalamic infarction. Neuropsychologia. 1994 Jan;32(1):39–51. doi: 10.1016/0028-3932(94)90067-1. [DOI] [PubMed] [Google Scholar]
  27. Phillips S., Sangalang V., Sterns G. Basal forebrain infarction. A clinicopathologic correlation. Arch Neurol. 1987 Nov;44(11):1134–1138. doi: 10.1001/archneur.1987.00520230024008. [DOI] [PubMed] [Google Scholar]
  28. Redish A. D., Touretzky D. S. Cognitive maps beyond the hippocampus. Hippocampus. 1997;7(1):15–35. doi: 10.1002/(SICI)1098-1063(1997)7:1<15::AID-HIPO3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  29. Regard M., Strauss E., Knapp P. Children's production on verbal and non-verbal fluency tasks. Percept Mot Skills. 1982 Dec;55(3 Pt 1):839–844. doi: 10.2466/pms.1982.55.3.839. [DOI] [PubMed] [Google Scholar]
  30. Richardson J. T. Performance in free recall following rupture and repair of intracranial aneurysm. Brain Cogn. 1989 Mar;9(2):210–226. doi: 10.1016/0278-2626(89)90031-6. [DOI] [PubMed] [Google Scholar]
  31. Seamans J. K., Phillips A. G. Selective memory impairments produced by transient lidocaine-induced lesions of the nucleus accumbens in rats. Behav Neurosci. 1994 Jun;108(3):456–468. doi: 10.1037//0735-7044.108.3.456. [DOI] [PubMed] [Google Scholar]
  32. Setlow B. The nucleus accumbens and learning and memory. J Neurosci Res. 1997 Sep 1;49(5):515–521. doi: 10.1002/(SICI)1097-4547(19970901)49:5<515::AID-JNR1>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  33. Shallice T., Burgess P. W. Deficits in strategy application following frontal lobe damage in man. Brain. 1991 Apr;114(Pt 2):727–741. doi: 10.1093/brain/114.2.727. [DOI] [PubMed] [Google Scholar]
  34. Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 25;298(1089):199–209. doi: 10.1098/rstb.1982.0082. [DOI] [PubMed] [Google Scholar]
  35. Snodgrass J. G., Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn. 1980 Mar;6(2):174–215. doi: 10.1037//0278-7393.6.2.174. [DOI] [PubMed] [Google Scholar]
  36. Sutherland R. J., Rodriguez A. J. The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behav Brain Res. 1989 Apr 1;32(3):265–277. doi: 10.1016/s0166-4328(89)80059-2. [DOI] [PubMed] [Google Scholar]
  37. Warrington E. K., Weiskrantz L. Amnesia: a disconnection syndrome? Neuropsychologia. 1982;20(3):233–248. doi: 10.1016/0028-3932(82)90099-9. [DOI] [PubMed] [Google Scholar]
  38. Whitehouse P. J., Price D. L., Clark A. W., Coyle J. T., DeLong M. R. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol. 1981 Aug;10(2):122–126. doi: 10.1002/ana.410100203. [DOI] [PubMed] [Google Scholar]
  39. Zola-Morgan S., Squire L. R., Amaral D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986 Oct;6(10):2950–2967. doi: 10.1523/JNEUROSCI.06-10-02950.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zola-Morgan S., Squire L. R. Neuroanatomy of memory. Annu Rev Neurosci. 1993;16:547–563. doi: 10.1146/annurev.ne.16.030193.002555. [DOI] [PubMed] [Google Scholar]
  41. von Cramon D. Y., Hebel N., Schuri U. A contribution to the anatomical basis of thalamic amnesia. Brain. 1985 Dec;108(Pt 4):993–1008. doi: 10.1093/brain/108.4.993. [DOI] [PubMed] [Google Scholar]
  42. von Cramon D. Y., Markowitsch H. J., Schuri U. The possible contribution of the septal region to memory. Neuropsychologia. 1993 Nov;31(11):1159–1180. doi: 10.1016/0028-3932(93)90065-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES