Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Nov;67(5):637–645. doi: 10.1136/jnnp.67.5.637

Unilateral focal lesions in the rostrolateral medulla influence chemosensitivity and breathing measured during wakefulness, sleep, and exercise

M Morrell 1, P Heywood 1, S Moosavi 1, A Guz 1, J Stevens 1
PMCID: PMC1736649  PMID: 10519871

Abstract

OBJECTIVES—The rostrolateral medulla (RLM) has been identified in animals as an important site of chemosensitivity; in humans such site(s) have not been defined. The aim of this study was to investigate the physiological implications of unilateral lesions in the lower brainstem on the control of breathing.
METHODS—In 15 patients breathing was measured awake at rest, asleep, during exercise, and during CO2 stimulation. The lesions were located clinically and by MRI; in nine patients they involved the RLM (RLM group), in six they were in the pons, cerebellum, or medial medulla (Non-RLM group). All RLM group patients, and three non-RLM group patients had ipsilateral Horner's syndrome.
RESULTS—Six of the RLM group had a ventilatory sensitivity to inhaled CO2 (V̇/PET CO2) below normal (group A: V̇/PET CO2, mean, 0.87; range 0.3-1.4 l.min-1/mm Hg). It was normal in all of the non-RLM group (group B: V̇/PET CO2, mean, 3.0; range, 2.6-3.9 min-1/mmHg). There was no significant difference in breathing between groups during relaxed wakefulness (V̇, group A: 7.44 (SD 2.5) l.min-1; group B: 6.02 (SD 1.3) l.min-1; PET CO2, group A: 41.0 (SD 4.2) mm g; group B: 38.3 (SD2.0) mm Hg) or during exercise (V̇/V̇O2: group A: 21 (SD 6.0) l.min-1/l.min-1; group B: 24 (SD 7.3) l.min-1/l.min-1). During sleep, all group A had fragmented sleep compared with only one patient in group B (group A: arousals, range 13 to >60 events/hour); moreover, in group A there was a high incidence of obstructive sleep apnoea associated with hypoxaemia.
CONCLUSION—Patients with unilateral RLM lesions require monitoring during sleep to diagnose any sleep apnoea. The finding that unilateral RLM lesions reduce ventilatory sensitivity to inhaled CO2 is consistent with animal studies. The reduced chemosensitivity had a minimal effect on breathing awake at rest or during exercise.



Full Text

The Full Text of this article is available as a PDF (186.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L., Chronos N., Lane R., Guz A. The measurement of breathlessness induced in normal subjects: validity of two scaling techniques. Clin Sci (Lond) 1985 Jul;69(1):7–16. doi: 10.1042/cs0690007. [DOI] [PubMed] [Google Scholar]
  2. Akilesh M. R., Kamper M., Li A., Nattie E. E. Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. J Appl Physiol (1985) 1997 Feb;82(2):469–479. doi: 10.1152/jappl.1997.82.2.469. [DOI] [PubMed] [Google Scholar]
  3. Bianchi A. L., Grélot L., Iscoe S., Remmers J. E. Electrophysiological properties of rostral medullary respiratory neurones in the cat: an intracellular study. J Physiol. 1988 Dec;407:293–310. doi: 10.1113/jphysiol.1988.sp017416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogousslavsky J., Khurana R., Deruaz J. P., Hornung J. P., Regli F., Janzer R., Perret C. Respiratory failure and unilateral caudal brainstem infarction. Ann Neurol. 1990 Nov;28(5):668–673. doi: 10.1002/ana.410280511. [DOI] [PubMed] [Google Scholar]
  5. Bronstein A. M., Morris J., Du Boulay G., Gresty M. A., Rudge P. Abnormalities of horizontal gaze. Clinical, oculographic and magnetic resonance imaging findings. I. Abducens palsy. J Neurol Neurosurg Psychiatry. 1990 Mar;53(3):194–199. doi: 10.1136/jnnp.53.3.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chaudhary B. A., Elguindi A. S., King D. W. Obstructive sleep apnea after lateral medullary syndrome. South Med J. 1982 Jan;75(1):65–67. doi: 10.1097/00007611-198201000-00016. [DOI] [PubMed] [Google Scholar]
  7. FINK B. R. Influence of cerebral activity in wakefulness on regulation of breathing. J Appl Physiol. 1961 Jan;16:15–20. doi: 10.1152/jappl.1961.16.1.15. [DOI] [PubMed] [Google Scholar]
  8. Forster H. V., Lowry T. F., Ohtake P. J., Pan L. G., Korducki M. J., Forster A. L. Differential effect of ventrolateral medullary cooling on respiratory muscles of goats. J Appl Physiol (1985) 1995 May;78(5):1859–1867. doi: 10.1152/jappl.1995.78.5.1859. [DOI] [PubMed] [Google Scholar]
  9. Forster H. V., Ohtake P. J., Pan L. G., Lowry T. F. Effect on breathing of surface ventrolateral medullary cooling in awake, anesthetized and asleep goats. Respir Physiol. 1997 Nov;110(2-3):187–197. doi: 10.1016/s0034-5687(97)00083-2. [DOI] [PubMed] [Google Scholar]
  10. Forster H. V., Pan L. G., Lowry T. F., Feroah T., Gershan W. M., Whaley A. A., Forster M. M., Sprtel B. Breathing of awake goats during prolonged dysfunction of caudal M ventrolateral medullary neurons. J Appl Physiol (1985) 1998 Jan;84(1):129–140. doi: 10.1152/jappl.1998.84.1.129. [DOI] [PubMed] [Google Scholar]
  11. Innes J. A., De Cort S. C., Evans P. J., Guz A. Central command influences cardiorespiratory response to dynamic exercise in humans with unilateral weakness. J Physiol. 1992 Mar;448:551–563. doi: 10.1113/jphysiol.1992.sp019057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones N. L., Robertson D. G., Kane J. W. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):954–960. doi: 10.1152/jappl.1979.47.5.954. [DOI] [PubMed] [Google Scholar]
  13. Martin P. J. Vertebrobasilar ischaemia. QJM. 1998 Dec;91(12):799–811. doi: 10.1093/qjmed/91.12.799. [DOI] [PubMed] [Google Scholar]
  14. McAllen R. M. Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience. 1986 May;18(1):51–59. doi: 10.1016/0306-4522(86)90178-8. [DOI] [PubMed] [Google Scholar]
  15. Nattie E. E., Li A. Rat retrotrapezoid nucleus iono- and metabotropic glutamate receptors and the control of breathing. J Appl Physiol (1985) 1995 Jan;78(1):153–163. doi: 10.1152/jappl.1995.78.1.153. [DOI] [PubMed] [Google Scholar]
  16. Nattie E. E., Li A. Retrotrapezoid nucleus lesions decrease phrenic activity and CO2 sensitivity in rats. Respir Physiol. 1994 Jun;97(1):63–77. doi: 10.1016/0034-5687(94)90012-4. [DOI] [PubMed] [Google Scholar]
  17. Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
  18. Shea S. A., Andres L. P., Shannon D. C., Banzett R. B. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J Physiol. 1993 Aug;468:623–640. doi: 10.1113/jphysiol.1993.sp019792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shea S. A., Walter J., Murphy K., Guz A. Evidence for individuality of breathing patterns in resting healthy man. Respir Physiol. 1987 Jun;68(3):331–344. doi: 10.1016/s0034-5687(87)80018-x. [DOI] [PubMed] [Google Scholar]
  20. Smith J. C., Ellenberger H. H., Ballanyi K., Richter D. W., Feldman J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991 Nov 1;254(5032):726–729. doi: 10.1126/science.1683005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vingerhoets F., Bogousslavsky J. Respiratory dysfunction in stroke. Clin Chest Med. 1994 Dec;15(4):729–737. [PubMed] [Google Scholar]
  22. Vuilleumier P., Bogousslavsky J., Regli F. Infarction of the lower brainstem. Clinical, aetiological and MRI-topographical correlations. Brain. 1995 Aug;118(Pt 4):1013–1025. doi: 10.1093/brain/118.4.1013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES