Abstract
OBJECTIVES—Several lines of evidence suggest that the endothelial constitutive nitric oxide synthase (ecNOS) and angiotensin converting enzyme (ACE) may have a role in Alzheimer's disease. ACE is widely expressed in the brain, and a DNA polymorphism at the ACE gene has been linked to the risk for late onset Alzheimer's disease. Nitric oxide (NO) production by microglial cells, astrocytes, and brain microvessels is enhanced in patients with Alzheimer's disease. There is a growing evidence that NO is involved in neuronal death in Alzheimer's disease, and the oxidative stress caused by NO in the brain could be a pathogenic mechanism in Alzheimer's disease. The objective was to determine if two DNA polymorphisms at the ecNOS and ACE genes that have been linked with different levels of enzyme expression, have some effect on the risk of developing late onset Alzheimer disease. METHODS—A total of 400 healthy controls younger than 65 years and 350 patients with Alzheimer's disease (average age 72 years) were genotyped for the ACE and ecNOS polymorphisms. To define a possible role for these polymorphisms in longevity 117 healthy controls older than 85 years were also analysed. Genomic DNA was obtained and amplified by polymerase chain reaction, and genotypes were defined following a previously described procedure. Gene and genotype frequencies between patients and controls were compared statistically. RESULTS—Gene and genotype frequencies for the ecNOS and ACE polymorphisms did not differ between both groups of healthy controls (<65 years and >85 years). EcNOS gene and genotype frequencies were similar between patients and controls. There was a slight but significantly increased frequency of the ACE-I allele among patients with Alzheimer's disease compared with controls (p=0.03; OR=1.28, 95%CI= 1.04;1.58). CONCLUSIONS—The ACE-I allele was associated with a slightly increased risk of developing late onset Alzheimer's disease.
Full Text
The Full Text of this article is available as a PDF (96.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akama K. T., Albanese C., Pestell R. G., Van Eldik L. J. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5795–5800. doi: 10.1073/pnas.95.10.5795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen A. M., Moeller I., Jenkins T. A., Zhuo J., Aldred G. P., Chai S. Y., Mendelsohn F. A. Angiotensin receptors in the nervous system. Brain Res Bull. 1998 Sep 1;47(1):17–28. doi: 10.1016/s0361-9230(98)00039-2. [DOI] [PubMed] [Google Scholar]
- Alvarez R., Reguero J. R., Batalla A., Iglesias-Cubero G., Cortina A., Alvarez V., Coto E. Angiotensin-converting enzyme and angiotensin II receptor 1 polymorphisms: association with early coronary disease. Cardiovasc Res. 1998 Nov;40(2):375–379. doi: 10.1016/s0008-6363(98)00179-5. [DOI] [PubMed] [Google Scholar]
- Blacker D., Wilcox M. A., Laird N. M., Rodes L., Horvath S. M., Go R. C., Perry R., Watson B., Jr, Bassett S. S., McInnis M. G. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet. 1998 Aug;19(4):357–360. doi: 10.1038/1243. [DOI] [PubMed] [Google Scholar]
- Cambien F., Poirier O., Lecerf L., Evans A., Cambou J. P., Arveiler D., Luc G., Bard J. M., Bara L., Ricard S. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature. 1992 Oct 15;359(6396):641–644. doi: 10.1038/359641a0. [DOI] [PubMed] [Google Scholar]
- Chai S. Y., McKenzie J. S., McKinley M. J., Mendelsohn F. A. Angiotensin converting enzyme in the human basal forebrain and midbrain visualized by in vitro autoradiography. J Comp Neurol. 1990 Jan 8;291(2):179–194. doi: 10.1002/cne.902910203. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
- Good P. F., Werner P., Hsu A., Olanow C. W., Perl D. P. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 1996 Jul;149(1):21–28. [PMC free article] [PubMed] [Google Scholar]
- Grammas P., Botchlet T. R., Moore P., Weigel P. H. Production of neurotoxic factors by brain endothelium in Alzheimer's disease. Ann N Y Acad Sci. 1997 Sep 26;826:47–55. doi: 10.1111/j.1749-6632.1997.tb48460.x. [DOI] [PubMed] [Google Scholar]
- Hu J., Akama K. T., Krafft G. A., Chromy B. A., Van Eldik L. J. Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res. 1998 Mar 2;785(2):195–206. doi: 10.1016/s0006-8993(97)01318-8. [DOI] [PubMed] [Google Scholar]
- Ii M., Sunamoto M., Ohnishi K., Ichimori Y. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 1996 May 13;720(1-2):93–100. doi: 10.1016/0006-8993(96)00156-4. [DOI] [PubMed] [Google Scholar]
- Jenkins T. A., Mendelsohn F. A., Chai S. Y. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J Neurochem. 1997 Mar;68(3):1304–1311. doi: 10.1046/j.1471-4159.1997.68031304.x. [DOI] [PubMed] [Google Scholar]
- Kang D. E., Saitoh T., Chen X., Xia Y., Masliah E., Hansen L. A., Thomas R. G., Thal L. J., Katzman R. Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease. Neurology. 1997 Jul;49(1):56–61. doi: 10.1212/wnl.49.1.56. [DOI] [PubMed] [Google Scholar]
- Kehoe P. G., Russ C., McIlory S., Williams H., Holmans P., Holmes C., Liolitsa D., Vahidassr D., Powell J., McGleenon B. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet. 1999 Jan;21(1):71–72. doi: 10.1038/5009. [DOI] [PubMed] [Google Scholar]
- Kehoe P., Wavrant-De Vrieze F., Crook R., Wu W. S., Holmans P., Fenton I., Spurlock G., Norton N., Williams H., Williams N. A full genome scan for late onset Alzheimer's disease. Hum Mol Genet. 1999 Feb;8(2):237–245. doi: 10.1093/hmg/8.2.237. [DOI] [PubMed] [Google Scholar]
- Lind R. W., Swanson L. W., Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology. 1985 Jan;40(1):2–24. doi: 10.1159/000124046. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M., Tsui L. C., Schappert K. T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478–17488. [PubMed] [Google Scholar]
- Mayeux R., Saunders A. M., Shea S., Mirra S., Evans D., Roses A. D., Hyman B. T., Crain B., Tang M. X., Phelps C. H. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease. Alzheimer's Disease Centers Consortium on Apolipoprotein E and Alzheimer's Disease. N Engl J Med. 1998 Feb 19;338(8):506–511. doi: 10.1056/NEJM199802193380804. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Pederson E. S., Harding J. W., Wright J. W. Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul Pept. 1998 Jun 30;74(2-3):97–103. doi: 10.1016/s0167-0115(98)00028-7. [DOI] [PubMed] [Google Scholar]
- Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
- Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990 Oct;86(4):1343–1346. doi: 10.1172/JCI114844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi F., Bianchini E. Synergistic induction of nitric oxide by beta-amyloid and cytokines in astrocytes. Biochem Biophys Res Commun. 1996 Aug 14;225(2):474–478. doi: 10.1006/bbrc.1996.1197. [DOI] [PubMed] [Google Scholar]
- Saavedra J. M. Brain and pituitary angiotensin. Endocr Rev. 1992 May;13(2):329–380. doi: 10.1210/edrv-13-2-329. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Hense H. W., Holmer S. R., Stender M., Perz S., Keil U., Lorell B. H., Riegger G. A. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994 Jun 9;330(23):1634–1638. doi: 10.1056/NEJM199406093302302. [DOI] [PubMed] [Google Scholar]
- Schächter F., Faure-Delanef L., Guénot F., Rouger H., Froguel P., Lesueur-Ginot L., Cohen D. Genetic associations with human longevity at the APOE and ACE loci. Nat Genet. 1994 Jan;6(1):29–32. doi: 10.1038/ng0194-29. [DOI] [PubMed] [Google Scholar]
- Shanmugam V., Sell K. W., Saha B. K. Mistyping ACE heterozygotes. PCR Methods Appl. 1993 Oct;3(2):120–121. doi: 10.1101/gr.3.2.120. [DOI] [PubMed] [Google Scholar]
- Song K., Allen A. M., Paxinos G., Mendelsohn F. A. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992 Feb 22;316(4):467–484. doi: 10.1002/cne.903160407. [DOI] [PubMed] [Google Scholar]
- Tsukada T., Yokoyama K., Arai T., Takemoto F., Hara S., Yamada A., Kawaguchi Y., Hosoya T., Igari J. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem Biophys Res Commun. 1998 Apr 7;245(1):190–193. doi: 10.1006/bbrc.1998.8267. [DOI] [PubMed] [Google Scholar]
- Uwabo J., Soma M., Nakayama T., Kanmatsuse K. Association of a variable number of tandem repeats in the endothelial constitutive nitric oxide synthase gene with essential hypertension in Japanese. Am J Hypertens. 1998 Jan;11(1 Pt 1):125–128. doi: 10.1016/s0895-7061(97)00419-6. [DOI] [PubMed] [Google Scholar]
- Vitek M. P., Snell J., Dawson H., Colton C. A. Modulation of nitric oxide production in human macrophages by apolipoprotein-E and amyloid-beta peptide. Biochem Biophys Res Commun. 1997 Nov 17;240(2):391–394. doi: 10.1006/bbrc.1997.7408. [DOI] [PubMed] [Google Scholar]
- Wang X. L., Sim A. S., Badenhop R. F., McCredie R. M., Wilcken D. E. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med. 1996 Jan;2(1):41–45. doi: 10.1038/nm0196-41. [DOI] [PubMed] [Google Scholar]
- de la Monte S. M., Bloch K. D. Aberrant expression of the constitutive endothelial nitric oxide synthase gene in Alzheimer disease. Mol Chem Neuropathol. 1997 Jan-Feb;30(1-2):139–159. doi: 10.1007/BF02815155. [DOI] [PubMed] [Google Scholar]