Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1999 Dec;67(6):737–741. doi: 10.1136/jnnp.67.6.737

Usefulness of a dopamine transporter PET ligand [18F]β-CFT in assessing disability in Parkinson's disease

J Rinne 1, H Ruottinen 1, J Bergman 1, M Haaparanta 1, P Sonninen 1, O Solin 1
PMCID: PMC1736672  PMID: 10567489

Abstract

OBJECTIVES—The usefulness of a novel dopamine transporter PET ligand, [18F]β-CFT in assessing disability in Parkinson's disease was studied.
METHODS—Twenty seven patients with Parkinson's disease in different disability stages (of which nine were patients with early disease) and nine healthy controls were studied. The regions of interest were drawn on a magnetic resonance image resliced according to the PET image.
RESULTS—There was a significant reduction in [18F]β-CFT uptake in the posterior putamen (to 18% of the control mean, p<0.00001), anterior putamen (28%, p<0.00001), and caudate nucleus (51%, p<0.00001) in the total population of patients with Parkinson's disease. The reduction in [18F]β-CFT uptake was more pronounced with more severe disability of the patients, the correlations between the total motor score of the unified Parkinson's disease rating scale (UPDRS) and [18F]β-CFT uptake being significant in the posterior putamen (r=−0.62 p=0.0005), anterior putamen (r=-0.64, p=0.0003), and the caudate nucleus (r=−0.62, p=0.0006). There was a significant negative correlation with putaminal [18F]β-CFT uptake and the hypokinesia and rigidity scores, but not with the tremor score of the UPDRS motor part. In nine patients with early disease and without any antiparkinsonian medication the reduction in the [18F]β-CFT uptake (average of ipsilateral and contralateral side) was reduced in the total putamen to 34% of the mean control value (p<0.00001). The corresponding figures in the other brain areas were: posterior putamen 21% (p<0.00001), anterior putamen 43% (p<0.00001), and caudate nucleus 76% (p<0.01). The reductions in [18F]β-CFT uptake were more severe in the contralateral than in the ipsilateral side. Individually, [18F]β-CFT uptake in the putamen in all patients was below 3 SD from the control mean. 
CONCLUSIONS—[18F]β-CFT is a sensitive marker of nigrostriatal dopaminergic dysfunction in Parkinson's disease and can be used in the diagnosis, assessment of disease severity, and follow up of patients.



Full Text

The Full Text of this article is available as a PDF (105.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloyo V. J., Ruffin J. S., Pazdalski P. S., Kirifides A. L., Harvey J. A. [3H]WIN 35,428 binding in the caudate nucleus of the rabbit: evidence for a single site on the dopamine transporter. J Pharmacol Exp Ther. 1995 Apr;273(1):435–444. [PubMed] [Google Scholar]
  2. Bergman J., Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol. 1997 Oct;24(7):677–683. doi: 10.1016/s0969-8051(97)00078-4. [DOI] [PubMed] [Google Scholar]
  3. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973 Dec;20(4):415–455. doi: 10.1016/0022-510x(73)90175-5. [DOI] [PubMed] [Google Scholar]
  4. Bhatia K. P., Marsden C. D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain. 1994 Aug;117(Pt 4):859–876. doi: 10.1093/brain/117.4.859. [DOI] [PubMed] [Google Scholar]
  5. Boja J. W., Cline E. J., Carroll F. I., Lewin A. H., Philip A., Dannals R., Wong D., Scheffel U., Kuhar M. J. High potency cocaine analogs: neurochemical, imaging, and behavioral studies. Ann N Y Acad Sci. 1992 Jun 28;654:282–291. doi: 10.1111/j.1749-6632.1992.tb25974.x. [DOI] [PubMed] [Google Scholar]
  6. Booij J., Tissingh G., Boer G. J., Speelman J. D., Stoof J. C., Janssen A. G., Wolters E. C., van Royen E. A. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease. J Neurol Neurosurg Psychiatry. 1997 Feb;62(2):133–140. doi: 10.1136/jnnp.62.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brooks D. J. Functional imaging in relation to parkinsonian syndromes. J Neurol Sci. 1993 Mar;115(1):1–17. doi: 10.1016/0022-510x(93)90061-3. [DOI] [PubMed] [Google Scholar]
  8. Brooks D. J., Ibanez V., Sawle G. V., Quinn N., Lees A. J., Mathias C. J., Bannister R., Marsden C. D., Frackowiak R. S. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990 Oct;28(4):547–555. doi: 10.1002/ana.410280412. [DOI] [PubMed] [Google Scholar]
  9. Brooks D. J., Salmon E. P., Mathias C. J., Quinn N., Leenders K. L., Bannister R., Marsden C. D., Frackowiak R. S. The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson's disease, studied with PET. Brain. 1990 Oct;113(Pt 5):1539–1552. doi: 10.1093/brain/113.5.1539. [DOI] [PubMed] [Google Scholar]
  10. Brücke T., Asenbaum S., Pirker W., Djamshidian S., Wenger S., Wöber C., Müller C., Podreka I. Measurement of the dopaminergic degeneration in Parkinson's disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl. 1997;50:9–24. [PubMed] [Google Scholar]
  11. Carpenter M. B., Peter P. Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J Comp Neurol. 1972 Jan;144(1):93–115. doi: 10.1002/cne.901440105. [DOI] [PubMed] [Google Scholar]
  12. Eidelberg D., Moeller J. R., Dhawan V., Sidtis J. J., Ginos J. Z., Strother S. C., Cedarbaum J., Greene P., Fahn S., Rottenberg D. A. The metabolic anatomy of Parkinson's disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord. 1990;5(3):203–213. doi: 10.1002/mds.870050304. [DOI] [PubMed] [Google Scholar]
  13. Eidelberg D., Moeller J. R., Dhawan V., Spetsieris P., Takikawa S., Ishikawa T., Chaly T., Robeson W., Margouleff D., Przedborski S. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab. 1994 Sep;14(5):783–801. doi: 10.1038/jcbfm.1994.99. [DOI] [PubMed] [Google Scholar]
  14. Fang J., Yu P. H. Effect of L-deprenyl, its structural analogues and some monoamine oxidase inhibitors on dopamine uptake. Neuropharmacology. 1994 Jun;33(6):763–768. doi: 10.1016/0028-3908(94)90116-3. [DOI] [PubMed] [Google Scholar]
  15. Fearnley J. M., Lees A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991 Oct;114(Pt 5):2283–2301. doi: 10.1093/brain/114.5.2283. [DOI] [PubMed] [Google Scholar]
  16. Fowler J. S., Volkow N. D., Logan J., Wang G. J., MacGregor R. R., Schyler D., Wolf A. P., Pappas N., Alexoff D., Shea C. Slow recovery of human brain MAO B after L-deprenyl (Selegeline) withdrawal. Synapse. 1994 Oct;18(2):86–93. doi: 10.1002/syn.890180203. [DOI] [PubMed] [Google Scholar]
  17. Frost J. J., Rosier A. J., Reich S. G., Smith J. S., Ehlers M. D., Snyder S. H., Ravert H. T., Dannals R. F. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann Neurol. 1993 Sep;34(3):423–431. doi: 10.1002/ana.410340331. [DOI] [PubMed] [Google Scholar]
  18. Garnett E. S., Nahmias C., Firnau G. Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can J Neurol Sci. 1984 Feb;11(1 Suppl):174–179. doi: 10.1017/s0317167100046369. [DOI] [PubMed] [Google Scholar]
  19. German D. C., Manaye K., Smith W. K., Woodward D. J., Saper C. B. Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol. 1989 Oct;26(4):507–514. doi: 10.1002/ana.410260403. [DOI] [PubMed] [Google Scholar]
  20. Goto S., Hirano A., Matsumoto S. Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson's disease and striatonigral degeneration. Ann Neurol. 1989 Dec;26(6):766–770. doi: 10.1002/ana.410260613. [DOI] [PubMed] [Google Scholar]
  21. Guttman M., Burkholder J., Kish S. J., Hussey D., Wilson A., DaSilva J., Houle S. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson's disease: implications for the symptomatic threshold. Neurology. 1997 Jun;48(6):1578–1583. doi: 10.1212/wnl.48.6.1578. [DOI] [PubMed] [Google Scholar]
  22. Haaparanta M., Bergman J., Laakso A., Hietala J., Solin O. [18F]CFT ([18F]WIN 35,428), a radioligand to study the dopamine transporter with PET: biodistribution in rats. Synapse. 1996 Aug;23(4):321–327. doi: 10.1002/(SICI)1098-2396(199608)23:4<321::AID-SYN10>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  23. Kish S. J., Shannak K., Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med. 1988 Apr 7;318(14):876–880. doi: 10.1056/NEJM198804073181402. [DOI] [PubMed] [Google Scholar]
  24. Laakso A., Bergman J., Haaparanta M., Vilkman H., Solin O., Hietala J. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects. Synapse. 1998 Mar;28(3):244–250. doi: 10.1002/(SICI)1098-2396(199803)28:3<244::AID-SYN7>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  25. Laruelle M., Baldwin R. M., Malison R. T., Zea-Ponce Y., Zoghbi S. S., al-Tikriti M. S., Sybirska E. H., Zimmermann R. C., Wisniewski G., Neumeyer J. L. SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse. 1993 Apr;13(4):295–309. doi: 10.1002/syn.890130402. [DOI] [PubMed] [Google Scholar]
  26. Leenders K. L., Palmer A. J., Quinn N., Clark J. C., Firnau G., Garnett E. S., Nahmias C., Jones T., Marsden C. D. Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry. 1986 Aug;49(8):853–860. doi: 10.1136/jnnp.49.8.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leenders K. L., Salmon E. P., Tyrrell P., Perani D., Brooks D. J., Sager H., Jones T., Marsden C. D., Frackowiak R. S. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson's disease. Arch Neurol. 1990 Dec;47(12):1290–1298. doi: 10.1001/archneur.1990.00530120034007. [DOI] [PubMed] [Google Scholar]
  28. Marek K. L., Seibyl J. P., Zoghbi S. S., Zea-Ponce Y., Baldwin R. M., Fussell B., Charney D. S., van Dyck C., Hoffer P. B., Innis R. P. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson's disease. Neurology. 1996 Jan;46(1):231–237. doi: 10.1212/wnl.46.1.231. [DOI] [PubMed] [Google Scholar]
  29. Paulus W., Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson's disease. J Neuropathol Exp Neurol. 1991 Nov;50(6):743–755. doi: 10.1097/00005072-199111000-00006. [DOI] [PubMed] [Google Scholar]
  30. Rinne J. O., Bergman J., Ruottinen H., Haaparanta M., Eronen E., Oikonen V., Sonninen P., Solin O. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson's disease. Synapse. 1999 Feb;31(2):119–124. doi: 10.1002/(SICI)1098-2396(199902)31:2<119::AID-SYN4>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  31. Rinne J. O., Laihinen A., Någren K., Ruottinen H., Ruotsalainen U., Rinne U. K. PET examination of the monoamine transporter with [11C]beta-CIT and [11C]beta-CFT in early Parkinson's disease. Synapse. 1995 Oct;21(2):97–103. doi: 10.1002/syn.890210202. [DOI] [PubMed] [Google Scholar]
  32. Rinne J. O., Rummukainen J., Paljärvi L., Rinne U. K. Dementia in Parkinson's disease is related to neuronal loss in the medial substantia nigra. Ann Neurol. 1989 Jul;26(1):47–50. doi: 10.1002/ana.410260107. [DOI] [PubMed] [Google Scholar]
  33. Rinne U. K., Sonninen V. Brain catecholamines and their metabolites in Parkinsonian patients. Treatment with levodopa alone or combined with a decarboxylase inhibitor. Arch Neurol. 1973 Feb;28(2):107–110. doi: 10.1001/archneur.1973.00490200055007. [DOI] [PubMed] [Google Scholar]
  34. Seibyl J. P., Marek K. L., Quinlan D., Sheff K., Zoghbi S., Zea-Ponce Y., Baldwin R. M., Fussell B., Smith E. O., Charney D. S. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson's disease. Ann Neurol. 1995 Oct;38(4):589–598. doi: 10.1002/ana.410380407. [DOI] [PubMed] [Google Scholar]
  35. Seibyl J. P., Marek K., Sheff K., Zoghbi S., Baldwin R. M., Charney D. S., van Dyck C. H., Innis R. B. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson's patients. J Nucl Med. 1998 Sep;39(9):1500–1508. [PubMed] [Google Scholar]
  36. Szabo J. Organization of the ascending striatal afferents in monkeys. J Comp Neurol. 1980 Jan 15;189(2):307–321. doi: 10.1002/cne.901890207. [DOI] [PubMed] [Google Scholar]
  37. Tedroff J., Aquilonius S. M., Hartvig P., Lundqvist H., Gee A. G., Uhlin J., Långström B. Monoamine re-uptake sites in the human brain evaluated in vivo by means of 11C-nomifensine and positron emission tomography: the effects of age and Parkinson's disease. Acta Neurol Scand. 1988 Mar;77(3):192–201. doi: 10.1111/j.1600-0404.1988.tb05894.x. [DOI] [PubMed] [Google Scholar]
  38. Vingerhoets F. J., Schulzer M., Calne D. B., Snow B. J. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann Neurol. 1997 Jan;41(1):58–64. doi: 10.1002/ana.410410111. [DOI] [PubMed] [Google Scholar]
  39. Wilson J. M., Levey A. I., Rajput A., Ang L., Guttman M., Shannak K., Niznik H. B., Hornykiewicz O., Pifl C., Kish S. J. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology. 1996 Sep;47(3):718–726. doi: 10.1212/wnl.47.3.718. [DOI] [PubMed] [Google Scholar]
  40. Zsilla G., Földi P., Held G., Székely A. M., Knoll J. The effect of repeated doses of (-) deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline. Pol J Pharmacol Pharm. 1986 Jan-Feb;38(1):57–67. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES