Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4653–4660. doi: 10.1128/iai.63.12.4653-4660.1995

Cytokine mRNA expression profiles in rats infected with the intestinal nematode Nippostrongylus brasiliensis.

S Matsuda 1, R Uchikawa 1, M Yamada 1, N Arizono 1
PMCID: PMC173668  PMID: 7591119

Abstract

Although the immune responses to intestinal nematode infection have been well studied and have been shown to be strongly driven by Th2-associated cytokines in mice, such information has been limited with respect to rats. We investigated changes in levels of the mRNAs encoding interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-10, and gamma interferon in the mesenteric lymph nodes of rats infected with Nippostrongylus brasiliensis by reverse transcription-PCR in comparison with immunoglobulin E (IgE)/IgG2a antibody, eosinophil, basophil, and mucosal mast cell responses. In the two rat strains used, Brown Norway and Fischer-344, which show different responses to allergens, serum IgE increased to much higher levels in the former than in the latter 2 weeks after infection. Intestinal mastocytosis was observed much earlier and more intensely in Brown Norway rats than in Fischer-344 rats, but the degrees of peripheral eosinophilia and basophilia did not differ between the two strains. In both strains, IL-3, IL-4, and IL-5 mRNA expression increased and peaked around 7 to 14 days after infection, while expression of IL-2, IL-10, and gamma interferon mRNAs did not change notably throughout the experimental period. The highest IL-4 mRNA expression was observed slightly earlier in Brown Norway than in Fischer-344 rats, but levels of IL-3 and IL-5 mRNAs peaked synchronously in both strains. The amounts of mRNAs encoding these three cytokines were always higher in Brown Norway than in Fischer-344 rats. It is suggested that in rats, Th2 or Th2-like cells are also induced after nematode infection, and IgE elevation is mainly related to increased IL-4 gene expression.

Full Text

The Full Text of this article is available as a PDF (264.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arizono N., Yamada M., Tegoshi T., Okada M., Uchikawa R., Matsuda S. Mucosal mast cell proliferation following normal and heterotopic infections of the nematode Nippostrongylus brasiliensis in rats. APMIS. 1994 Aug;102(8):589–596. [PubMed] [Google Scholar]
  2. Cohen D. R., Hapel A. J., Young I. G. Cloning and expression of the rat interleukin-3 gene. Nucleic Acids Res. 1986 May 12;14(9):3641–3658. doi: 10.1093/nar/14.9.3641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Diaz-Sanchez D., Noble A., Staynov D. Z., Lee T. H., Kemeny D. M. Elimination of IgE regulatory rat CD8+ T cells in vivo differentially modulates interleukin-4 and interferon-gamma but not interleukin-2 production by splenic T cells. Immunology. 1993 Apr;78(4):513–519. [PMC free article] [PubMed] [Google Scholar]
  4. Dijkema R., van der Meide P. H., Pouwels P. H., Caspers M., Dubbeld M., Schellekens H. Cloning and expression of the chromosomal immune interferon gene of the rat. EMBO J. 1985 Mar;4(3):761–767. doi: 10.1002/j.1460-2075.1985.tb03694.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Finkelman F. D., Katona I. M., Mosmann T. R., Coffman R. L. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J Immunol. 1988 Feb 15;140(4):1022–1027. [PubMed] [Google Scholar]
  6. Finkelman F. D., Katona I. M., Urban J. F., Jr, Holmes J., Ohara J., Tung A. S., Sample J. V., Paul W. E. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988 Oct 1;141(7):2335–2341. [PubMed] [Google Scholar]
  7. Finkelman F. D., Madden K. B., Cheever A. W., Katona I. M., Morris S. C., Gately M. K., Hubbard B. R., Gause W. C., Urban J. F., Jr Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J Exp Med. 1994 May 1;179(5):1563–1572. doi: 10.1084/jem.179.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodman R. E., Oblak J., Bell R. G. Synthesis and characterization of rat interleukin-10 (IL-10) cDNA clones from the RNA of cultured OX8- OX22- thoracic duct T cells. Biochem Biophys Res Commun. 1992 Nov 30;189(1):1–7. doi: 10.1016/0006-291x(92)91516-s. [DOI] [PubMed] [Google Scholar]
  9. Hültner L., Druez C., Moeller J., Uyttenhove C., Schmitt E., Rüde E., Dörmer P., Van Snick J. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol. 1990 Jun;20(6):1413–1416. doi: 10.1002/eji.1830200632. [DOI] [PubMed] [Google Scholar]
  10. Jarrett E. E., Haig D. M. Time course studies on rat IgE production in N. Brasiliensis infection. Clin Exp Immunol. 1976 May;24(2):346–351. [PMC free article] [PubMed] [Google Scholar]
  11. Jarrett E., Bazin H. Elevation of total serum IgE in rats following helminth parasite infection. Nature. 1974 Oct 18;251(5476):613–614. doi: 10.1038/251613a0. [DOI] [PubMed] [Google Scholar]
  12. Kasugai T., Okada M., Morimoto M., Arizono N., Maeyama K., Yamada M., Tei H., Dohmae K., Onoue H., Newlands G. F. Infection of Nippostrongylus brasiliensis induces normal increase of basophils in mast cell-deficient Ws/Ws rats with a small deletion at the kinase domain of c-kit. Blood. 1993 May 15;81(10):2521–2529. [PubMed] [Google Scholar]
  13. Kasugai T., Tei H., Okada M., Hirota S., Morimoto M., Yamada M., Nakama A., Arizono N., Kitamura Y. Infection with Nippostrongylus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood. 1995 Mar 1;85(5):1334–1340. [PubMed] [Google Scholar]
  14. King C. L., Nutman T. B. Biological role of helper T-cell subsets in helminth infections. Chem Immunol. 1992;54:136–165. [PubMed] [Google Scholar]
  15. Kinoshita T., Imamura J., Nagai H., Shimotohno K. Quantification of gene expression over a wide range by the polymerase chain reaction. Anal Biochem. 1992 Nov 1;206(2):231–235. doi: 10.1016/0003-2697(92)90358-e. [DOI] [PubMed] [Google Scholar]
  16. Kitamura Y., Kasugai T., Arizono N., Matsuda H. Development of mast cells and basophils: processes and regulation mechanisms. Am J Med Sci. 1993 Sep;306(3):185–191. doi: 10.1097/00000441-199309000-00011. [DOI] [PubMed] [Google Scholar]
  17. McKnight A. J., Barclay A. N., Mason D. W. Molecular cloning of rat interleukin 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol. 1991 May;21(5):1187–1194. doi: 10.1002/eji.1830210514. [DOI] [PubMed] [Google Scholar]
  18. McKnight A. J., Mason D. W., Barclay A. N. Sequence of rat interleukin 2 and anomalous binding of a mouse interleukin 2 cDNA probe to rat MHC class II-associated invariant chain mRNA. Immunogenetics. 1989;30(2):145–147. doi: 10.1007/BF02421547. [DOI] [PubMed] [Google Scholar]
  19. Miller H. R., Jarrett W. F. Immune reactions in mucous membranes. I. Intestinal mast cell response during helminth expulsion in the rat. Immunology. 1971 Mar;20(3):277–288. [PMC free article] [PubMed] [Google Scholar]
  20. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  21. Murphey S. M., Brown S., Miklos N., Fireman P. Reagin synthesis in inbred strains of rats. Immunology. 1974 Aug;27(2):245–253. [PMC free article] [PubMed] [Google Scholar]
  22. Nagai Y., Inobe M., Kikuchi K., Uede T. Functional and phenotypical analysis of subsets of rat CD4+ T cells. Microbiol Immunol. 1993;37(8):623–632. doi: 10.1111/j.1348-0421.1993.tb01685.x. [DOI] [PubMed] [Google Scholar]
  23. Noble A., Staynov D. Z., Diaz-Sanchez D., Lee T. H., Kemeny D. M. Elimination of IgE regulatory rat CD8+ T cells in vivo increases the co-ordinate expression of Th2 cytokines IL-4, IL-5 and IL-10. Immunology. 1993 Oct;80(2):326–329. [PMC free article] [PubMed] [Google Scholar]
  24. Noble A., Staynov D. Z., Kemeny D. M. Generation of rat Th2-like cells in vitro is interleukin-4-dependent and inhibited by interferon-gamma. Immunology. 1993 Aug;79(4):562–567. [PMC free article] [PubMed] [Google Scholar]
  25. Nudel U., Zakut R., Shani M., Neuman S., Levy Z., Yaffe D. The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Mar 25;11(6):1759–1771. doi: 10.1093/nar/11.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ogilvie B. M., Hesketh P. M., Rose M. E. Nippostrongylus brasiliensis: peripheral blood leucocyte response of rats, with special reference to basophils. Exp Parasitol. 1978 Nov;46(1):20–30. doi: 10.1016/0014-4894(78)90153-4. [DOI] [PubMed] [Google Scholar]
  27. Ramaswamy K., Goodman R. E., Bell R. G. Cytokine profile of protective anti-Trichinella spiralis CD4+ OX22- and non-protective CD4+ OX22+ thoracic duct cells in rats: secretion of IL-4 alone does not determine protective capacity. Parasite Immunol. 1994 Aug;16(8):435–445. doi: 10.1111/j.1365-3024.1994.tb00371.x. [DOI] [PubMed] [Google Scholar]
  28. Richter G., Blankenstein T., Diamantstein T. Evolutionary aspects, structure, and expression of the rat interleukin 4 gene. Cytokine. 1990 May;2(3):221–228. doi: 10.1016/1043-4666(90)90020-t. [DOI] [PubMed] [Google Scholar]
  29. Sher A., Coffman R. L. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol. 1992;10:385–409. doi: 10.1146/annurev.iy.10.040192.002125. [DOI] [PubMed] [Google Scholar]
  30. Snapper C. M., Paul W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science. 1987 May 22;236(4804):944–947. doi: 10.1126/science.3107127. [DOI] [PubMed] [Google Scholar]
  31. Staynov D. Z., Lee T. H. Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in human peripheral blood mononuclear cells after activation with phorbol myristate acetate. Immunology. 1992 Jan;75(1):196–201. [PMC free article] [PubMed] [Google Scholar]
  32. Svetić A., Madden K. B., Zhou X. D., Lu P., Katona I. M., Finkelman F. D., Urban J. F., Jr, Gause W. C. A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2-associated cytokines and IL-3. J Immunol. 1993 Apr 15;150(8 Pt 1):3434–3441. [PubMed] [Google Scholar]
  33. Uberla K., Li W. Q., Qin Z. H., Richter G., Raabe T., Diamantstein T., Blankenstein T. The rat interleukin-5 gene: characterization and expression by retroviral gene transfer and polymerase chain reaction. Cytokine. 1991 Jan;3(1):72–81. doi: 10.1016/1043-4666(91)90012-3. [DOI] [PubMed] [Google Scholar]
  34. Uchikawa R., Yamada M., Matsuda S., Arizono N. IgE antibody responses induced by transplantation of the nematode Nippostrongylus brasiliensis in rats: a possible role of nematode excretory-secretory product in IgE production. Immunology. 1993 Dec;80(4):541–545. [PMC free article] [PubMed] [Google Scholar]
  35. Uchikawa R., Yamada M., Matsuda S., Kuroda A., Arizono N. IgE antibody production is associated with suppressed interferon-gamma levels in mesenteric lymph nodes of rats infected with the nematode Nippostrongylus brasiliensis. Immunology. 1994 Jul;82(3):427–432. [PMC free article] [PubMed] [Google Scholar]
  36. Urban J. F., Jr, Katona I. M., Paul W. E., Finkelman F. D. Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5513–5517. doi: 10.1073/pnas.88.13.5513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamaguchi Y., Hayashi Y., Sugama Y., Miura Y., Kasahara T., Kitamura S., Torisu M., Mita S., Tominaga A., Takatsu K. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med. 1988 May 1;167(5):1737–1742. doi: 10.1084/jem.167.5.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamaguchi Y., Suda T., Suda J., Eguchi M., Miura Y., Harada N., Tominaga A., Takatsu K. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med. 1988 Jan 1;167(1):43–56. doi: 10.1084/jem.167.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES