Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4675–4681. doi: 10.1128/iai.63.12.4675-4681.1995

Tumor necrosis factor alpha activity in genital tract secretions of guinea pigs infected with chlamydiae.

T Darville 1, K K Laffoon 1, L R Kishen 1, R G Rank 1
PMCID: PMC173671  PMID: 7591122

Abstract

Previous studies using the guinea pig model of chlamydial genital infection demonstrated that primary infection is associated with a marked acute inflammatory response early on, while chronic inflammation appears later, at a time when the level of infection is reduced. Challenge infections result primarily in a chronic inflammatory response. The stimuli that initiate inflammation and lead to tissue damage have not been defined. We investigated the possibility that tumor necrosis factors (TNFs) play a role in the inflammatory response to chlamydial genital tract infection. Cytotoxicity assays for TNF were performed on genital tract secretions collected from female guinea pigs during infection with the Chlamydia psittaci agent of guinea pig inclusion conjunctivitis. During the early days of primary infection, high levels of TNF-alpha were detected in genital tract secretions from inbred S2 strain and outbred Hartley strain guinea pigs. Significantly lower levels of TNF-alpha were detected in secretions from both strains during challenge infection. In general, the intensity of the TNF-alpha response was proportional to the intensity of infection. High TNF-alpha levels were present during primary infection at a time of marked neutrophil influx. Thus, TNF-alpha may play an important role in the response to primary chlamydial genital tract infection.

Full Text

The Full Text of this article is available as a PDF (284.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barron A. L., White H. J., Rank R. G., Soloff B. L. Target tissues associated with genital infection of female guinea pigs by the chlamydial agent of guinea pig inclusion conjunctivitis. J Infect Dis. 1979 Jan;139(1):60–68. doi: 10.1093/infdis/139.1.60. [DOI] [PubMed] [Google Scholar]
  2. Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper M. D., Rapp J., Jeffery-Wiseman C., Barnes R. C., Stephens D. S. Chlamydia trachomatis infection of human fallopian tube organ cultures. J Gen Microbiol. 1990 Jun;136(6):1109–1115. doi: 10.1099/00221287-136-6-1109. [DOI] [PubMed] [Google Scholar]
  4. Darville T., Tabor D., Simpson K., Jacobs R. F. Intravenous immunoglobulin modulates human mononuclear phagocyte tumor necrosis factor-alpha production in vitro. Pediatr Res. 1994 Apr;35(4 Pt 1):397–403. [PubMed] [Google Scholar]
  5. Dayer J. M., Beutler B., Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med. 1985 Dec 1;162(6):2163–2168. doi: 10.1084/jem.162.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elias J. A., Krol R. C., Freundlich B., Sampson P. M. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin. J Clin Invest. 1988 Feb;81(2):325–333. doi: 10.1172/JCI113324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Han J., Brown T., Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med. 1990 Feb 1;171(2):465–475. doi: 10.1084/jem.171.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hussain L. A., Kelly C. G., Fellowes R., Hecht E. M., Wilson J., Chapman M., Lehner T. Expression and gene transcript of Fc receptors for IgG, HLA class II antigens and Langerhans cells in human cervico-vaginal epithelium. Clin Exp Immunol. 1992 Dec;90(3):530–538. doi: 10.1111/j.1365-2249.1992.tb05878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hutchinson G. R., Taylor-Robinson D., Dourmashkin R. R. Growth and effect of chlamydiae in human and bovine oviduct organ cultures. Br J Vener Dis. 1979 Jun;55(3):194–202. doi: 10.1136/sti.55.3.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karimi S. T., Schloemer R. H., Wilde C. E., 3rd Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells. Infect Immun. 1989 Jun;57(6):1780–1785. doi: 10.1128/iai.57.6.1780-1785.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kiviat N. B., Paavonen J. A., Brockway J., Critchlow C. W., Brunham R. C., Stevens C. E., Stamm W. E., Kuo C. C., DeRouen T., Holmes K. K. Cytologic manifestations of cervical and vaginal infections. I. Epithelial and inflammatory cellular changes. JAMA. 1985 Feb 15;253(7):989–996. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. McGee Z. A., Clemens C. M., Jensen R. L., Klein J. J., Barley L. R., Gorby G. L. Local induction of tumor necrosis factor as a molecular mechanism of mucosal damage by gonococci. Microb Pathog. 1992 May;12(5):333–341. doi: 10.1016/0882-4010(92)90096-7. [DOI] [PubMed] [Google Scholar]
  14. Megran D. W., Stiver H. G., Bowie W. R. Complement activation and stimulation of chemotaxis by Chlamydia trachomatis. Infect Immun. 1985 Sep;49(3):670–673. doi: 10.1128/iai.49.3.670-673.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okusawa S., Yancey K. B., van der Meer J. W., Endres S., Lonnemann G., Hefter K., Frank M. M., Burke J. F., Dinarello C. A., Gelfand J. A. C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1 beta and interleukin 1 alpha. J Exp Med. 1988 Jul 1;168(1):443–448. doi: 10.1084/jem.168.1.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patton D. L., Halbert S. A., Kuo C. C., Wang S. P., Holmes K. K. Host response to primary Chlamydia trachomatis infection of the fallopian tube in pig-tailed monkeys. Fertil Steril. 1983 Dec;40(6):829–840. [PubMed] [Google Scholar]
  17. Patton D. L., Landers D. V., Schachter J. Experimental Chlamydia trachomatis salpingitis in mice: initial studies on the characterization of the leukocyte response to chlamydial infection. J Infect Dis. 1989 Jun;159(6):1105–1110. doi: 10.1093/infdis/159.6.1105. [DOI] [PubMed] [Google Scholar]
  18. Rank R. G., Batteiger B. E., Soderberg L. S. Susceptibility to reinfection after a primary chlamydial genital infection. Infect Immun. 1988 Sep;56(9):2243–2249. doi: 10.1128/iai.56.9.2243-2249.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rank R. G., Sanders M. M. Pathogenesis of endometritis and salpingitis in a guinea pig model of chlamydial genital infection. Am J Pathol. 1992 Apr;140(4):927–936. [PMC free article] [PubMed] [Google Scholar]
  20. Rank R. G., Sanders M. M., Patton D. L. Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. Sex Transm Dis. 1995 Jan-Feb;22(1):48–54. doi: 10.1097/00007435-199501000-00008. [DOI] [PubMed] [Google Scholar]
  21. Register K. B., Morgan P. A., Wyrick P. B. Interaction between Chlamydia spp. and human polymorphonuclear leukocytes in vitro. Infect Immun. 1986 Jun;52(3):664–670. doi: 10.1128/iai.52.3.664-670.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richmond S. J., Stirling P. Localization of chlamydial group Antigen in McCoy cell monolayers infected with Chlamydia trachomatis or Chlamydia psittaci. Infect Immun. 1981 Nov;34(2):561–570. doi: 10.1128/iai.34.2.561-570.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ripa K. T., Møller B. R., Mårdh P. A., Freundt E. A., Melsen F. Experimental acute salpingitis in grivet monkeys provoked by Chlamydia trachomatis. Acta Pathol Microbiol Scand B. 1979 Feb;87B(1):65–70. doi: 10.1111/j.1699-0463.1979.tb02404.x. [DOI] [PubMed] [Google Scholar]
  24. Tamatani T., Kimura S., Hashimoto T., Onozaki K. Purification of guinea pig tumor necrosis factor (TNF): comparison of its antiproliferative and differentiative activities for myeloid leukemic cell lines with those of recombinant human TNF. J Biochem. 1989 Jan;105(1):55–60. doi: 10.1093/oxfordjournals.jbchem.a122619. [DOI] [PubMed] [Google Scholar]
  25. Toth M., Jeremias J., Ledger W. J., Witkin S. S. In vivo tumor necrosis factor production in women with salpingitis. Surg Gynecol Obstet. 1992 May;174(5):359–362. [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tuffrey M., Alexander F., Woods C., Taylor-Robinson D. Genetic susceptibility to chlamydial salpingitis and subsequent infertility in mice. J Reprod Fertil. 1992 May;95(1):31–38. doi: 10.1530/jrf.0.0950031. [DOI] [PubMed] [Google Scholar]
  28. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–452. doi: 10.1146/annurev.iy.10.040192.002211. [DOI] [PubMed] [Google Scholar]
  29. Williams D. M., Bonewald L. F., Roodman G. D., Byrne G. I., Magee D. M., Schachter J. Tumor necrosis factor alpha is a cytotoxin induced by murine Chlamydia trachomatis infection. Infect Immun. 1989 May;57(5):1351–1355. doi: 10.1128/iai.57.5.1351-1355.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Williams D. M., Magee D. M., Bonewald L. F., Smith J. G., Bleicker C. A., Byrne G. I., Schachter J. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun. 1990 Jun;58(6):1572–1576. doi: 10.1128/iai.58.6.1572-1576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yong E. C., Chi E. Y., Kuo C. C. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J Immunol. 1987 Aug 15;139(4):1297–1302. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES