Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2000 Feb;68(2):191–195. doi: 10.1136/jnnp.68.2.191

Isolated absence of F waves and proximal axonal dysfunction in Guillain-Barré syndrome with antiganglioside antibodies

S Kuwabara 1, K Ogawara 1, K Mizobuchi 1, M Koga 1, M Mori 1, T Hattori 1, N Yuki 1
PMCID: PMC1736791  PMID: 10644786

Abstract

OBJECTIVES—To investigate the pathophysiology of selective absence of F waves and its relation with antiganglioside antibodies in Guillain-Barré syndrome (GBS). Some patients with GBS show the absence of F waves as an isolated conduction abnormality, which has been interpreted as demyelination in the proximal nerve segments.
METHODS—In 62 consecutive patients with GBS, sequential nerve conduction and F wave studies were reviewed, and antibodies against ganglioside GM1, GM1b, GD1a, GalNAc-GD1a, GD1b, and GQ1b were measured by an enzyme linked immunosorbent assay.
RESULTS—In the first electrophysiological studies, isolated absence of F waves was found in 12 (19%) patients. Sequential studies in 10 of these patients showed two electrophysiological sequel patterns; rapid restoration of F waves (six patients), and persistent absence of F waves with distal motor nerve degeneration (acute motor axonal neuropathy, four patients). None of the 10 patients showed evidence of demyelination in the proximal, intermediate, or distal nerve segments throughout the course. Of the 62 patients, IgG antibodies against GM1, GM1b, GalNAc-GD1a, or GD1b were significantly associated with the electrodiagnosis of acute motor axonal neuropathy, and patients with these antibodies more often had isolated absence of F waves than patients without them (11 of 36 (31%) v one of 26 (4%); p<0.01). Eleven of the 12 patients with isolated absence of F waves had positive serology for one or more antiganglioside antibodies.
CONCLUSIONS—In GBS with antiganglioside antibodies, isolated absence of F waves is a frequent conduction abnormality especially in the early phase of the disease, and may be caused by axonal dysfunction, such as physiological conduction block or axonal degeneration at the nerve roots.



Full Text

The Full Text of this article is available as a PDF (181.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asbury A. K., Arnason B. G., Adams R. D. The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore) 1969 May;48(3):173–215. doi: 10.1097/00005792-196905000-00001. [DOI] [PubMed] [Google Scholar]
  2. Asbury A. K., Cornblath D. R. Assessment of current diagnostic criteria for Guillain-Barré syndrome. Ann Neurol. 1990;27 (Suppl):S21–S24. doi: 10.1002/ana.410270707. [DOI] [PubMed] [Google Scholar]
  3. Baba M., Matsunaga M. Recovery from acute demyelinating conduction block in the presence of prolonged distal conduction delay due to peripheral nerve constriction. Electromyogr Clin Neurophysiol. 1984 Nov-Dec;24(7):611–617. [PubMed] [Google Scholar]
  4. Clouston P. D., Kiers L., Zuniga G., Cros D. Quantitative analysis of the compound muscle action potential in early acute inflammatory demyelinating polyneuropathy. Electroencephalogr Clin Neurophysiol. 1994 Aug;93(4):245–254. doi: 10.1016/0168-5597(94)90026-4. [DOI] [PubMed] [Google Scholar]
  5. Eisen A., Humphreys P. The Guillain-Barré syndrome. A clinical and electrodiagnostic study of 25 cases. Arch Neurol. 1974 Jun;30(6):438–443. doi: 10.1001/archneur.1974.00490360014004. [DOI] [PubMed] [Google Scholar]
  6. Enders U., Karch H., Toyka K. V., Michels M., Zielasek J., Pette M., Heesemann J., Hartung H. P. The spectrum of immune responses to Campylobacter jejuni and glycoconjugates in Guillain-Barré syndrome and in other neuroimmunological disorders. Ann Neurol. 1993 Aug;34(2):136–144. doi: 10.1002/ana.410340208. [DOI] [PubMed] [Google Scholar]
  7. Fraser J. L., Olney R. K. The relative diagnostic sensitivity of different F-wave parameters in various polyneuropathies. Muscle Nerve. 1992 Aug;15(8):912–918. doi: 10.1002/mus.880150808. [DOI] [PubMed] [Google Scholar]
  8. Griffin J. W., Li C. Y., Ho T. W., Xue P., Macko C., Gao C. Y., Yang C., Tian M., Mishu B., Cornblath D. R. Guillain-Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain. 1995 Jun;118(Pt 3):577–595. doi: 10.1093/brain/118.3.577. [DOI] [PubMed] [Google Scholar]
  9. Hafer-Macko C., Hsieh S. T., Li C. Y., Ho T. W., Sheikh K., Cornblath D. R., McKhann G. M., Asbury A. K., Griffin J. W. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol. 1996 Oct;40(4):635–644. doi: 10.1002/ana.410400414. [DOI] [PubMed] [Google Scholar]
  10. Ho T. W., Li C. Y., Cornblath D. R., Gao C. Y., Asbury A. K., Griffin J. W., McKhann G. M. Patterns of recovery in the Guillain-Barre syndromes. Neurology. 1997 Mar;48(3):695–700. doi: 10.1212/wnl.48.3.695. [DOI] [PubMed] [Google Scholar]
  11. Ho T. W., Mishu B., Li C. Y., Gao C. Y., Cornblath D. R., Griffin J. W., Asbury A. K., Blaser M. J., McKhann G. M. Guillain-Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain. 1995 Jun;118(Pt 3):597–605. doi: 10.1093/brain/118.3.597. [DOI] [PubMed] [Google Scholar]
  12. Ilyas A. A., Mithen F. A., Dalakas M. C., Chen Z. W., Cook S. D. Antibodies to acidic glycolipids in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Sci. 1992 Jan;107(1):111–121. doi: 10.1016/0022-510x(92)90217-9. [DOI] [PubMed] [Google Scholar]
  13. Kiers L., Clouston P., Zuniga G., Cros D. Quantitative studies of F responses in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Electroencephalogr Clin Neurophysiol. 1994 Aug;93(4):255–264. doi: 10.1016/0168-5597(94)90027-2. [DOI] [PubMed] [Google Scholar]
  14. Kimura J., Butzer J. F. F-wave conduction velocity in Guillain-Barré syndrome. Assessment of nerve segment between axilla and spinal cord. Arch Neurol. 1975 Aug;32(8):524–529. doi: 10.1001/archneur.1975.00490500044004. [DOI] [PubMed] [Google Scholar]
  15. Kuwabara S., Yuki N., Koga M., Hattori T., Matsuura D., Miyake M., Noda M. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barré syndrome. Ann Neurol. 1998 Aug;44(2):202–208. doi: 10.1002/ana.410440210. [DOI] [PubMed] [Google Scholar]
  16. McKhann G. M., Cornblath D. R., Griffin J. W., Ho T. W., Li C. Y., Jiang Z., Wu H. S., Zhaori G., Liu Y., Jou L. P. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol. 1993 Apr;33(4):333–342. doi: 10.1002/ana.410330402. [DOI] [PubMed] [Google Scholar]
  17. McLeod J. G. Electrophysiological studies in the Guillain-Barré syndrome. Ann Neurol. 1981;9 (Suppl):20–27. doi: 10.1002/ana.410090705. [DOI] [PubMed] [Google Scholar]
  18. Mills K. R., Murray N. M. Proximal conduction block in early Guillain-Barré syndrome. Lancet. 1985 Sep 21;2(8456):659–659. doi: 10.1016/s0140-6736(85)90017-0. [DOI] [PubMed] [Google Scholar]
  19. Olney R. K., Aminoff M. J. Electrodiagnostic features of the Guillain-Barré syndrome: the relative sensitivity of different techniques. Neurology. 1990 Mar;40(3 Pt 1):471–475. doi: 10.1212/wnl.40.3_part_1.471. [DOI] [PubMed] [Google Scholar]
  20. Olsson Y. Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol. 1968 Jan 2;10(1):26–33. doi: 10.1007/BF00690507. [DOI] [PubMed] [Google Scholar]
  21. Panayiotopoulos C. P. F chronodispersion: a new electrophysiologic method. Muscle Nerve. 1979 Jan-Feb;2(1):68–72. doi: 10.1002/mus.880020110. [DOI] [PubMed] [Google Scholar]
  22. Rees J. H., Gregson N. A., Hughes R. A. Anti-ganglioside GM1 antibodies in Guillain-Barré syndrome and their relationship to Campylobacter jejuni infection. Ann Neurol. 1995 Nov;38(5):809–816. doi: 10.1002/ana.410380516. [DOI] [PubMed] [Google Scholar]
  23. Ropper A. H., Wijdicks E. F., Shahani B. T. Electrodiagnostic abnormalities in 113 consecutive patients with Guillain-Barré syndrome. Arch Neurol. 1990 Aug;47(8):881–887. doi: 10.1001/archneur.1990.00530080065012. [DOI] [PubMed] [Google Scholar]
  24. Santoro M., Uncini A., Corbo M., Staugaitis S. M., Thomas F. P., Hays A. P., Latov N. Experimental conduction block induced by serum from a patient with anti-GM1 antibodies. Ann Neurol. 1992 Apr;31(4):385–390. doi: 10.1002/ana.410310407. [DOI] [PubMed] [Google Scholar]
  25. Takigawa T., Yasuda H., Kikkawa R., Shigeta Y., Saida T., Kitasato H. Antibodies against GM1 ganglioside affect K+ and Na+ currents in isolated rat myelinated nerve fibers. Ann Neurol. 1995 Apr;37(4):436–442. doi: 10.1002/ana.410370405. [DOI] [PubMed] [Google Scholar]
  26. Visser L. H., Van der Meché F. G., Van Doorn P. A., Meulstee J., Jacobs B. C., Oomes P. G., Kleyweg R. P., Meulstee J. Guillain-Barré syndrome without sensory loss (acute motor neuropathy). A subgroup with specific clinical, electrodiagnostic and laboratory features. Dutch Guillain-Barré Study Group. Brain. 1995 Aug;118(Pt 4):841–847. doi: 10.1093/brain/118.4.841. [DOI] [PubMed] [Google Scholar]
  27. Vriesendorp F. J., Mishu B., Blaser M. J., Koski C. L. Serum antibodies to GM1, GD1b, peripheral nerve myelin, and Campylobacter jejuni in patients with Guillain-Barré syndrome and controls: correlation and prognosis. Ann Neurol. 1993 Aug;34(2):130–135. doi: 10.1002/ana.410340206. [DOI] [PubMed] [Google Scholar]
  28. Yokota T., Inaba A., Yuki N., Ichikawa T., Tanaka H., Saito Y., Kanouchi T. The F wave disappears due to impaired excitability of motor neurons or proximal axons in inflammatory demyelinating neuropathies. J Neurol Neurosurg Psychiatry. 1996 Jun;60(6):650–654. doi: 10.1136/jnnp.60.6.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yuki N., Tagawa Y., Irie F., Hirabayashi Y., Handa S. Close association of Guillain-Barré syndrome with antibodies to minor monosialogangliosides GM1b and GM1 alpha. J Neuroimmunol. 1997 Apr;74(1-2):30–34. doi: 10.1016/s0165-5728(96)00201-9. [DOI] [PubMed] [Google Scholar]
  30. Yuki N., Yoshino H., Sato S., Miyatake T. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology. 1990 Dec;40(12):1900–1902. doi: 10.1212/wnl.40.12.1900. [DOI] [PubMed] [Google Scholar]
  31. Zappia M., Valentino P., Marchello L. P., Paniccia M., Montagna P. F-wave normative studies in different nerves of healthy subjects. Electroencephalogr Clin Neurophysiol. 1993 Feb;89(1):67–72. doi: 10.1016/0168-5597(93)90087-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES