Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4790–4794. doi: 10.1128/iai.63.12.4790-4794.1995

Gonococcal infection in a nonhuman host is determined by human complement C1q.

S Nowicki 1, M G Martens 1, B J Nowicki 1
PMCID: PMC173686  PMID: 7591137

Abstract

Human C1q displayed a dose-dependent protection of gonococcal cells (GC) from the bactericidal effect of newborn rat serum. All rat pups injected with C1q-preincubated GC developed bacteremia, while none of the animals injected with GC only were infected. After clearance of bacteremia at day 6, live GC could still be recovered from tested organs, including the liver. Preincubation of GC with higher concentrations of C1q was associated with increased morbidity. In contrast to human serum as a source of C1q, rat, rabbit, and mouse sera did not increase the in vivo virulence of Neisseria gonorrhoeae. C1q-deficient human serum, heat-inactivated C1q or human serum, type IV collagen, and complement C3 were inefficient in inducing infection. Experimental infection by C1q-preincubated GC was inhibited by anti-C1q antibodies in a dose-dependent fashion, demonstrating a causal effect of C1q function. This report demonstrates the novel finding that human C1q, a component of the human immune system with a general function for elimination of infection, may increase GC virulence and result in the development of disseminated infection in a nonhuman host.

Full Text

The Full Text of this article is available as a PDF (212.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arko R. J. An immunologic model in laboratory animals for the study of Neisseria gonorrhoeae. J Infect Dis. 1974 Apr;129(4):451–455. doi: 10.1093/infdis/129.4.451. [DOI] [PubMed] [Google Scholar]
  2. Arko R. J. Neisseria gonorrhoeae: experimental infection of laboratory animals. Science. 1972 Sep 29;177(4055):1200–1201. doi: 10.1126/science.177.4055.1200. [DOI] [PubMed] [Google Scholar]
  3. Chandler F. W., Jr, Kraus S. J. Animal model of human disease. Gonorrhea. Am J Pathol. 1976 Feb;82(2):437–440. [PMC free article] [PubMed] [Google Scholar]
  4. Daha M. R. Possible mechanisms of degradation of C1q in vivo and in vitro: role of macrophages. Behring Inst Mitt. 1989 Jul;(84):42–46. [PubMed] [Google Scholar]
  5. Diena B. B., Lavergne G., Ryan A., Ashton F. E., Wallace R., Perry M., Daoust V. The chick embryo in studies of virulence and immunity with Neisseria Gonorrhoeae. Rev Can Biol. 1975 Dec;34(4):213–220. [PubMed] [Google Scholar]
  6. Eisenstein B. I., Masi A. T. Disseminated gonococcal infection (DGI) and gonococcal arthritis (GCA): I. Bacteriology, epidemiology, host factors, pathogen factors, and pathology. Semin Arthritis Rheum. 1981 Feb;10(3):155–172. doi: 10.1016/s0049-0172(81)80001-7. [DOI] [PubMed] [Google Scholar]
  7. Fleming T. J., Wallsmith D. E., Rosenthal R. S. Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infect Immun. 1986 May;52(2):600–608. doi: 10.1128/iai.52.2.600-608.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harriman G. R., Podack E. R., Braude A. I., Corbeil L. C., Esser A. F., Curd J. G. Activation of complement by serum-resistant Neisseria gonorrhoeae. Assembly of the membrane attack complex without subsequent cell death. J Exp Med. 1982 Oct 1;156(4):1235–1249. doi: 10.1084/jem.156.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horstmann R. D., Sievertsen H. J., Knobloch J., Fischetti V. A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1657–1661. doi: 10.1073/pnas.85.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Höffken K., McLaughlin P. J., Price M. R., Preston V. E., Baldwin R. W. Rat Clq: similarity to human Clq in functional and compositional properties. Immunochemistry. 1978 Jun;15(6):409–412. doi: 10.1016/0161-5890(78)90139-6. [DOI] [PubMed] [Google Scholar]
  11. Johnson A. P., Tuffrey M., Taylor-Robinson D. Resistance of mice to genital infection with Neisseria gonorrhoeae. J Med Microbiol. 1989 Sep;30(1):33–36. doi: 10.1099/00222615-30-1-33. [DOI] [PubMed] [Google Scholar]
  12. Kaspar R. L., Drutz D. J. Perihepatitis and hepatitis as complications of experimental endocarditis due to Neisseria gonorrhoeae in the rabbit. J Infect Dis. 1977 Jul;136(1):37–42. doi: 10.1093/infdis/136.1.37. [DOI] [PubMed] [Google Scholar]
  13. Kolb W. P., Kolb L. M., Podack E. R. C1q: isolation from human serum in high yield by affinity chromatography and development of a highly sensitive hemolytic assay. J Immunol. 1979 May;122(5):2103–2111. [PubMed] [Google Scholar]
  14. Leung K., Kerr J. S. Rat Clq: isolation and purification from normal serum and development of a sensitive hemolytic assay. Immunol Invest. 1985 Aug;14(4):283–298. doi: 10.3109/08820138509022664. [DOI] [PubMed] [Google Scholar]
  15. Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med. 1990 May 1;171(5):1649–1664. doi: 10.1084/jem.171.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McShan W. M., Williams R. P., Hull R. A. A recombinant molecule from a disseminating strain of Neisseria gonorrhoeae that confers serum bactericidal resistance. Infect Immun. 1987 Dec;55(12):3017–3022. doi: 10.1128/iai.55.12.3017-3022.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morse S. A., Chen C. Y., LeFaou A., Mietzner T. A. A potential role for the major iron-regulated protein expressed by pathogenic Neisseria species. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S306–S310. doi: 10.1093/cid/10.supplement_2.s306. [DOI] [PubMed] [Google Scholar]
  18. Nowicki B., Hart A., Coyne K. E., Lublin D. M., Nowicki S. Short consensus repeat-3 domain of recombinant decay-accelerating factor is recognized by Escherichia coli recombinant Dr adhesin in a model of a cell-cell interaction. J Exp Med. 1993 Dec 1;178(6):2115–2121. doi: 10.1084/jem.178.6.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reid K. B. Isolation, by partial pepsin digestion, of the three collagen-like regions present in subcomponent Clq of the first component of human complement. Biochem J. 1976 Apr 1;155(1):5–17. doi: 10.1042/bj1550005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reid K. B., Lowe D. M., Porter R. R. Isolation and characterization of C1q, a subcomponent of the first component of complement, from human and rabbit sera. Biochem J. 1972 Dec;130(3):749–763. doi: 10.1042/bj1300749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider H., Griffiss J. M., Boslego J. W., Hitchcock P. J., Zahos K. M., Apicella M. A. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med. 1991 Dec 1;174(6):1601–1605. doi: 10.1084/jem.174.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swanson J., Barrera O., Sola J., Boslego J. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp Med. 1988 Dec 1;168(6):2121–2129. doi: 10.1084/jem.168.6.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sweet R. L., Blankfort-Doyle M., Robbie M. O., Schacter J. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA. 1986 Apr 18;255(15):2062–2064. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES