Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2000 May;68(5):627–632. doi: 10.1136/jnnp.68.5.627

Lesion heterogeneity in multiple sclerosis: a study of the relations between appearances on T1 weighted images, T1 relaxation times, and metabolite concentrations

P Brex 1, G Parker 1, S Leary 1, P Molyneux 1, G Barker 1, C Davie 1, A Thompson 1, D Miller 1
PMCID: PMC1736901  PMID: 10766895

Abstract

OBJECTIVES—Multiple sclerosis lesions appear as areas of high signal on T2 weighted MRI. A proportion of these lesions, when viewed on T1 weighted MRI, appear hypointense compared with surrounding white matter. These hypointense T1 lesions are thought to represent areas of greater tissue damage compared with the more non-specific, total T2 lesion load. This study aimed to better characterise the properties of high signal T2 lesions with differing appearances on T1 weighted MRI using quantitative MR techniques.
METHODS—Eleven patients with secondary progressive multiple sclerosis were studied. Two high signal T2 lesions were selected from each patient—one of which appeared hypointense and one isointense on a T1 weighted image. A voxel was positioned around each lesion and for this volume of brain the metabolite concentrations were estimated using proton MR spectroscopy (1H-MRS) and the T1 relaxation time within each voxel calculated from a T1 map generated using a multislice technique.
RESULTS—Compared with isointense T1 lesions, hypointense T1 lesions exhibited a significantly lower absolute concentration of N-acetyl derived metabolites (tNAA) and a significantly higher absolute concentration of myo-inositol (Ins). T1 relaxation time correlated significantly with both tNAA (r=−0.8, p < 0.001) and Ins (r=0.5, p=0.012). There was no correlation between T1 relaxation times and creatine/phosphocreatine or choline containing compounds.
CONCLUSIONS—Prolonged T1 relaxation times seem to reflect the severity of axonal damage or dysfunction (inferred by a low tNAA) and possibly also gliosis (inferred by a high Ins) in chronic multiple sclerosis lesions.



Full Text

The Full Text of this article is available as a PDF (202.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold D. L., Riess G. T., Matthews P. M., Francis G. S., Collins D. L., Wolfson C., Antel J. P. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol. 1994 Jul;36(1):76–82. doi: 10.1002/ana.410360115. [DOI] [PubMed] [Google Scholar]
  2. Barkhof F., McGowan J. C., van Waesberghe J. H., Grossman R. I. Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psychiatry. 1998 May;64 (Suppl 1):S77–S79. [PubMed] [Google Scholar]
  3. Barnes D., McDonald W. I., Landon D. N., Johnson G. The characterization of experimental gliosis by quantitative nuclear magnetic resonance imaging. Brain. 1988 Feb;111(Pt 1):83–94. doi: 10.1093/brain/111.1.83. [DOI] [PubMed] [Google Scholar]
  4. Brand A., Richter-Landsberg C., Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15(3-5):289–298. doi: 10.1159/000111347. [DOI] [PubMed] [Google Scholar]
  5. Brex P. A., Gomez-Anson B., Parker G. J., Molyneux P. D., Miszkiel K. A., Barker G. J., MacManus D. G., Davie C. A., Plant G. T., Miller D. H. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Sci. 1999 Jun 15;166(1):16–22. doi: 10.1016/s0022-510x(99)00105-7. [DOI] [PubMed] [Google Scholar]
  6. Brück W., Bitsch A., Kolenda H., Brück Y., Stiefel M., Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol. 1997 Nov;42(5):783–793. doi: 10.1002/ana.410420515. [DOI] [PubMed] [Google Scholar]
  7. Davie C. A., Barker G. J., Thompson A. J., Tofts P. S., McDonald W. I., Miller D. H. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):736–742. doi: 10.1136/jnnp.63.6.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davie C. A., Hawkins C. P., Barker G. J., Brennan A., Tofts P. S., Miller D. H., McDonald W. I. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain. 1994 Feb;117(Pt 1):49–58. doi: 10.1093/brain/117.1.49. [DOI] [PubMed] [Google Scholar]
  9. Davie C. A., Silver N. C., Barker G. J., Tofts P. S., Thompson A. J., McDonald W. I., Miller D. H. Does the extent of axonal loss and demyelination from chronic lesions in multiple sclerosis correlate with the clinical subgroup? J Neurol Neurosurg Psychiatry. 1999 Dec;67(6):710–715. doi: 10.1136/jnnp.67.6.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Stefano N., Matthews P. M., Antel J. P., Preul M., Francis G., Arnold D. L. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol. 1995 Dec;38(6):901–909. doi: 10.1002/ana.410380610. [DOI] [PubMed] [Google Scholar]
  11. Filippi M., Horsfield M. A., Tofts P. S., Barkhof F., Thompson A. J., Miller D. H. Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain. 1995 Dec;118(Pt 6):1601–1612. doi: 10.1093/brain/118.6.1601. [DOI] [PubMed] [Google Scholar]
  12. Gasperini C., Pozzilli C., Bastianello S., Giugni E., Horsfield M. A., Koudriavtseva T., Galgani S., Paolillo A., Haggiag S., Millefiorini E. Interferon-beta-1a in relapsing-remitting multiple sclerosis: effect on hypointense lesion volume on T1 weighted images. J Neurol Neurosurg Psychiatry. 1999 Nov;67(5):579–584. doi: 10.1136/jnnp.67.5.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hiehle J. F., Jr, Grossman R. I., Ramer K. N., Gonzalez-Scarano F., Cohen J. A. Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images. AJNR Am J Neuroradiol. 1995 Jan;16(1):69–77. [PMC free article] [PubMed] [Google Scholar]
  14. Kimura H., Grossman R. I., Lenkinski R. E., Gonzalez-Scarano F. Proton MR spectroscopy and magnetization transfer ratio in multiple sclerosis: correlative findings of active versus irreversible plaque disease. AJNR Am J Neuroradiol. 1996 Sep;17(8):1539–1547. [PMC free article] [PubMed] [Google Scholar]
  15. Koopmans R. A., Li D. K., Zhu G., Allen P. S., Penn A., Paty D. W. Magnetic resonance spectroscopy of multiple sclerosis: in-vivo detection of myelin breakdown products. Lancet. 1993 Mar 6;341(8845):631–632. doi: 10.1016/0140-6736(93)90391-s. [DOI] [PubMed] [Google Scholar]
  16. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  17. Loevner L. A., Grossman R. I., McGowan J. C., Ramer K. N., Cohen J. A. Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. AJNR Am J Neuroradiol. 1995 Aug;16(7):1473–1479. [PMC free article] [PubMed] [Google Scholar]
  18. Miller D. H., Austin S. J., Connelly A., Youl B. D., Gadian D. G., McDonald W. I. Proton magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis. Lancet. 1991 Jan 5;337(8732):58–59. doi: 10.1016/0140-6736(91)93383-k. [DOI] [PubMed] [Google Scholar]
  19. Miller D. H. Magnetic resonance in monitoring the treatment of multiple sclerosis. Ann Neurol. 1994;36 (Suppl):S91–S94. doi: 10.1002/ana.410360720. [DOI] [PubMed] [Google Scholar]
  20. Miller D. H., Molyneux P. D., Barker G. J., MacManus D. G., Moseley I. F., Wagner K. Effect of interferon-beta1b on magnetic resonance imaging outcomes in secondary progressive multiple sclerosis: results of a European multicenter, randomized, double-blind, placebo-controlled trial. European Study Group on Interferon-beta1b in secondary progressive multiple sclerosis. Ann Neurol. 1999 Dec;46(6):850–859. doi: 10.1002/1531-8249(199912)46:6<850::aid-ana7>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  21. O'Riordan J. I., Gawne Cain M., Coles A., Wang L., Compston D. A., Tofts P., Miller D. H. T1 hypointense lesion load in secondary progressive multiple sclerosis: a comparison of pre versus post contrast loads and of manual versus semi automated threshold techniques for lesion segmentation. Mult Scler. 1998 Oct;4(5):408–412. doi: 10.1177/135245859800400502. [DOI] [PubMed] [Google Scholar]
  22. Pouwels P. J., Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med. 1998 Jan;39(1):53–60. doi: 10.1002/mrm.1910390110. [DOI] [PubMed] [Google Scholar]
  23. Provencher S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993 Dec;30(6):672–679. doi: 10.1002/mrm.1910300604. [DOI] [PubMed] [Google Scholar]
  24. Simmons M. L., Frondoza C. G., Coyle J. T. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience. 1991;45(1):37–45. doi: 10.1016/0306-4522(91)90101-s. [DOI] [PubMed] [Google Scholar]
  25. Simon J. H., Jacobs L. D., Campion M., Wende K., Simonian N., Cookfair D. L., Rudick R. A., Herndon R. M., Richert J. R., Salazar A. M. Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann Neurol. 1998 Jan;43(1):79–87. doi: 10.1002/ana.410430114. [DOI] [PubMed] [Google Scholar]
  26. Strange K., Emma F., Paredes A., Morrison R. Osmoregulatory changes in myo-inositol content and Na+/myo-inositol cotransport in rat cortical astrocytes. Glia. 1994 Sep;12(1):35–43. doi: 10.1002/glia.440120105. [DOI] [PubMed] [Google Scholar]
  27. Thurston J. H., Sherman W. R., Hauhart R. E., Kloepper R. F. myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr Res. 1989 Nov;26(5):482–485. doi: 10.1203/00006450-198911000-00024. [DOI] [PubMed] [Google Scholar]
  28. Truyen L., van Waesberghe J. H., van Walderveen M. A., van Oosten B. W., Polman C. H., Hommes O. R., Adèr H. J., Barkhof F. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996 Dec;47(6):1469–1476. doi: 10.1212/wnl.47.6.1469. [DOI] [PubMed] [Google Scholar]
  29. Urenjak J., Williams S. R., Gadian D. G., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993 Mar;13(3):981–989. doi: 10.1523/JNEUROSCI.13-03-00981.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Certaines J. D., Henriksen O., Spisni A., Cortsen M., Ring P. B. In vivo measurements of proton relaxation times in human brain, liver, and skeletal muscle: a multicenter MRI study. Magn Reson Imaging. 1993;11(6):841–850. doi: 10.1016/0730-725x(93)90201-n. [DOI] [PubMed] [Google Scholar]
  31. van Waesberghe J. H., Kamphorst W., De Groot C. J., van Walderveen M. A., Castelijns J. A., Ravid R., Lycklama à Nijeholt G. J., van der Valk P., Polman C. H., Thompson A. J. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999 Nov;46(5):747–754. doi: 10.1002/1531-8249(199911)46:5<747::aid-ana10>3.3.co;2-w. [DOI] [PubMed] [Google Scholar]
  32. van Walderveen M. A., Barkhof F., Hommes O. R., Polman C. H., Tobi H., Frequin S. T., Valk J. Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology. 1995 Sep;45(9):1684–1690. doi: 10.1212/wnl.45.9.1684. [DOI] [PubMed] [Google Scholar]
  33. van Walderveen M. A., Barkhof F., Pouwels P. J., van Schijndel R. A., Polman C. H., Castelijns J. A. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol. 1999 Jul;46(1):79–87. doi: 10.1002/1531-8249(199907)46:1<79::aid-ana12>3.3.co;2-0. [DOI] [PubMed] [Google Scholar]
  34. van Walderveen M. A., Kamphorst W., Scheltens P., van Waesberghe J. H., Ravid R., Valk J., Polman C. H., Barkhof F. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 1998 May;50(5):1282–1288. doi: 10.1212/wnl.50.5.1282. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES