Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4826–4829. doi: 10.1128/iai.63.12.4826-4829.1995

Isolation, cultivation, and partial characterization of the ELB agent associated with cat fleas.

S Radulovic 1, J A Higgins 1, D C Jaworski 1, G A Dasch 1, A F Azad 1
PMCID: PMC173691  PMID: 7591142

Abstract

ELB rickettsiae from cat flea homogenates were recovered in tissue culture cells following sequential passage through laboratory rats and the yolk sacs of embryonated chicken eggs. Seven days after inoculation of ELB from the infected yolk sacs, Vero cells and L929 cells were observed to contain intracellular bacteria as demonstrated by Diff Quik and indirect immunofluorescence assay staining. The rickettsial and ELB identity of the cultured agent was confirmed by PCR detection of the 16S rRNA and citrate synthase genes and PCR-restriction fragment length polymorphism analysis of the 17-kDa conserved rickettsial antigen gene. The ELB rickettsiae induced plaques in Vero cells on day 11 postinfection. Rat anti-ELB serum reacted at 1:4,096 to cultured ELB and had lower reactivity to Rickettsia typhi Wilmington (1:1,024), Rickettsia akari Kaplan (1:512), and Rickettsia australis JC (1:64). Spotted fever group polyclonal sera also exhibited lower reactivity to ELB than to the homologous antigen. Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of the ELB isolate and two R. typhi strains were identical.

Full Text

The Full Text of this article is available as a PDF (288.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. R., Schmidtmann E. T., Azad A. F. Infection of colonized cat fleas, Ctenocephalides felis (Bouché), with a rickettsia-like microorganism. Am J Trop Med Hyg. 1990 Oct;43(4):400–409. doi: 10.4269/ajtmh.1990.43.400. [DOI] [PubMed] [Google Scholar]
  2. Adams W. H., Emmons R. W., Brooks J. E. The changing ecology of murine (endemic) typhus in Southern California. Am J Trop Med Hyg. 1970 Mar;19(2):311–318. doi: 10.4269/ajtmh.1970.19.311. [DOI] [PubMed] [Google Scholar]
  3. Azad A. F., Sacci J. B., Jr, Nelson W. M., Dasch G. A., Schmidtmann E. T., Carl M. Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):43–46. doi: 10.1073/pnas.89.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beati L., Finidori J. P., Gilot B., Raoult D. Comparison of serologic typing, sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein analysis, and genetic restriction fragment length polymorphism analysis for identification of rickettsiae: characterization of two new rickettsial strains. J Clin Microbiol. 1992 Aug;30(8):1922–1930. doi: 10.1128/jcm.30.8.1922-1930.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boman H. G., Faye I., Gudmundsson G. H., Lee J. Y., Lidholm D. A. Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem. 1991 Oct 1;201(1):23–31. doi: 10.1111/j.1432-1033.1991.tb16252.x. [DOI] [PubMed] [Google Scholar]
  6. Cociancich S., Bulet P., Hetru C., Hoffmann J. A. The inducible antibacterial peptides of insects. Parasitol Today. 1994 Apr;10(4):132–139. doi: 10.1016/0169-4758(94)90260-7. [DOI] [PubMed] [Google Scholar]
  7. Daffre S., Kylsten P., Samakovlis C., Hultmark D. The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet. 1994 Jan;242(2):152–162. doi: 10.1007/BF00391008. [DOI] [PubMed] [Google Scholar]
  8. Gilmore R. D., Jr, Cieplak W., Jr, Policastro P. F., Hackstadt T. The 120 kilodalton outer membrane protein (rOmp B) of Rickettsia rickettsii is encoded by an unusually long open reading frame: evidence for protein processing from a large precursor. Mol Microbiol. 1991 Oct;5(10):2361–2370. doi: 10.1111/j.1365-2958.1991.tb02082.x. [DOI] [PubMed] [Google Scholar]
  9. Gilmore R. D., Jr, Hackstadt T. DNA polymorphism in the conserved 190 kDa antigen gene repeat region among spotted fever group Rickettsiae. Biochim Biophys Acta. 1991 Jul 26;1097(1):77–80. doi: 10.1016/0925-4439(91)90027-7. [DOI] [PubMed] [Google Scholar]
  10. Hoffmann J. A., Hetru C. Insect defensins: inducible antibacterial peptides. Immunol Today. 1992 Oct;13(10):411–415. doi: 10.1016/0167-5699(92)90092-L. [DOI] [PubMed] [Google Scholar]
  11. Hultmark D. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 1993 May;9(5):178–183. doi: 10.1016/0168-9525(93)90165-e. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Philip R. N., Casper E. A., Burgdorfer W., Gerloff R. K., Hughes L. E., Bell E. J. Serologic typing of rickettsiae of the spotted fever group by microimmunofluorescence. J Immunol. 1978 Nov;121(5):1961–1968. [PubMed] [Google Scholar]
  14. Raoult D., Dasch G. A. The line blot: an immunoassay for monoclonal and other antibodies. Its application to the serotyping of gram-negative bacteria. J Immunol Methods. 1989 Dec 20;125(1-2):57–65. doi: 10.1016/0022-1759(89)90078-1. [DOI] [PubMed] [Google Scholar]
  15. Regnery R. L., Spruill C. L., Plikaytis B. D. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991 Mar;173(5):1576–1589. doi: 10.1128/jb.173.5.1576-1589.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schriefer M. E., Sacci J. B., Jr, Dumler J. S., Bullen M. G., Azad A. F. Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J Clin Microbiol. 1994 Apr;32(4):949–954. doi: 10.1128/jcm.32.4.949-954.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schriefer M. E., Sacci J. B., Jr, Taylor J. P., Higgins J. A., Azad A. F. Murine typhus: updated roles of multiple urban components and a second typhuslike rickettsia. J Med Entomol. 1994 Sep;31(5):681–685. doi: 10.1093/jmedent/31.5.681. [DOI] [PubMed] [Google Scholar]
  18. Sorvillo F. J., Gondo B., Emmons R., Ryan P., Waterman S. H., Tilzer A., Andersen E. M., Murray R. A., Barr R. A suburban focus of endemic typhus in Los Angeles County: association with seropositive domestic cats and opossums. Am J Trop Med Hyg. 1993 Feb;48(2):269–273. doi: 10.4269/ajtmh.1993.48.269. [DOI] [PubMed] [Google Scholar]
  19. Weiss E., Coolbaugh J. C., Williams J. C. Separation of viable Rickettsia typhi from yolk sac and L cell host components by renografin density gradient centrifugation. Appl Microbiol. 1975 Sep;30(3):456–463. doi: 10.1128/am.30.3.456-463.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Werren J. H., Hurst G. D., Zhang W., Breeuwer J. A., Stouthamer R., Majerus M. E. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol. 1994 Jan;176(2):388–394. doi: 10.1128/jb.176.2.388-394.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams S. G., Sacci J. B., Jr, Schriefer M. E., Andersen E. M., Fujioka K. K., Sorvillo F. J., Barr A. R., Azad A. F. Typhus and typhuslike rickettsiae associated with opossums and their fleas in Los Angeles County, California. J Clin Microbiol. 1992 Jul;30(7):1758–1762. doi: 10.1128/jcm.30.7.1758-1762.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES