Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4830–4836. doi: 10.1128/iai.63.12.4830-4836.1995

Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle.

B J Shenker 1, S Datar 1
PMCID: PMC173692  PMID: 7591143

Abstract

Fusobacterium nucleatum has been implicated in the pathogenesis of several diseases, including urinary tract infections, bacteremia, pericarditis, otitis media, and disorders of the oral cavity such as pulpal infections, alveolar bone abscesses, and periodontal disease. We have previously demonstrated that sonic extracts of F. nucleatum FDC 364 were capable of inhibiting human T-cell responses to mitogens and antigens. In this study, we have further characterized this immunosuppressive protein (FIP) and initiated experiments to determine its mode of action. The purified FIP has an apparent molecular mass of 90 to 100 kDa; sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the FIP is actually composed of two subunits with molecular masses of 48 and 44 kDa. Purified FIP retained its biological activity and was capable of inhibiting mitogen-induced proliferation of human T cells. Inhibition was dose dependent, and the FIP exhibited a specific activity approximately 250-fold greater than that of the crude extract. Cell cycle analysis indicates that FIP-treated cells were prevented from exiting the G0/G1 phase of the cell cycle. However, FIP did not alter the expression of activation markers (CD69, CD25, and CD71) or interleukin-2 secretion. The latter observations suggest that the T cells did indeed become activated and had entered the G1 phase of the cell cycle. Analysis of the expression of cyclins indicates that the phase of the cell cycle that is FIP sensitive resides somewhere beyond the restriction point of cyclin D2 (early to mid-G1) but prior to that of cyclins D3 and E (mid- to late G1). Finally, analysis of the expression of the proliferating cell nuclear antigen indicates that this is the earliest detectable defect in T cells exposed to FIP. We propose that if a block in the G1 phase of the cell cycle occurs in vivo in lymphocytes, it may result in a state of local and/or systemic immunosuppression. These suppressive effects could alter the nature and consequences of host-parasite interactions, thereby enhancing the pathogenicity of F. nucleatum itself or that of some other opportunistic organisms.

Full Text

The Full Text of this article is available as a PDF (328.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajchenbaum F., Ando K., DeCaprio J. A., Griffin J. D. Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T lymphocytes. J Biol Chem. 1993 Feb 25;268(6):4113–4119. [PubMed] [Google Scholar]
  2. Arneborn P., Biberfeld G. T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella. Infect Immun. 1983 Jan;39(1):29–37. doi: 10.1128/iai.39.1.29-37.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bravo R., Frank R., Blundell P. A., Macdonald-Bravo H. Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature. 1987 Apr 2;326(6112):515–517. doi: 10.1038/326515a0. [DOI] [PubMed] [Google Scholar]
  4. Brook I. Anaerobic bacteria in pediatric infections. Am Fam Physician. 1981 Mar;23(3):201–204. [PubMed] [Google Scholar]
  5. Edson R. S., Rosenblatt J. E., Washington J. A., 2nd, Stewart J. B. Gas-liquid chromatography of positive blood cultures for rapid presumptive diagnosis of anaerobic bacteremia. J Clin Microbiol. 1982 Jun;15(6):1059–1061. doi: 10.1128/jcm.15.6.1059-1061.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giordano M., Danova M., Pellicciari C., Wilson G. D., Mazzini G., Conti A. M., Franchini G., Riccardi A., Romanini M. G. Proliferating cell nuclear antigen (PCNA)/cyclin expression during the cell cycle in normal and leukemic cells. Leuk Res. 1991;15(11):965–974. doi: 10.1016/0145-2126(91)90101-x. [DOI] [PubMed] [Google Scholar]
  7. Gong J., Traganos F., Darzynkiewicz Z. Staurosporine blocks cell progression through G1 between the cyclin D and cyclin E restriction points. Cancer Res. 1994 Jun 15;54(12):3136–3139. [PubMed] [Google Scholar]
  8. Ito Y., Kishishita M., Yanase S. Induction of Epstein-Barr virus antigens in human lymphoblastoid P3HR-1 cells with culture fluid of Fusobacterium nucleatum. Cancer Res. 1980 Nov;40(11):4329–4330. [PubMed] [Google Scholar]
  9. Kantzler G. B., Lauteria S. F., Cusumano C. L., Lee J. D., Ganguly R., Waldman R. H. Immunosuppression during influenza virus infection. Infect Immun. 1974 Nov;10(5):996–1002. doi: 10.1128/iai.10.5.996-1002.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kauffman C. A., Phair J. P., Linnemann C. C., Jr, Schiff G. M. Cell-mediated immunity in humans during viral infection. I. Effect of rubella on dermal hypersensitivity, phytohemagglutinin response, and T lymphocyte numbers. Infect Immun. 1974 Jul;10(1):212–215. doi: 10.1128/iai.10.1.212-215.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kierszenbaum F., Cuna W. R., Beltz L. A., Sztein M. B. Trypanosoma cruzi reduces the number of high-affinity IL-2 receptors on activated human lymphocytes by suppressing the expression of the p55 and p70 receptor components. J Immunol. 1989 Jul 1;143(1):275–279. [PubMed] [Google Scholar]
  12. Kurki P., Lotz M., Ogata K., Tan E. M. Proliferating cell nuclear antigen (PCNA)/cyclin in activated human T lymphocytes. J Immunol. 1987 Jun 15;138(12):4114–4120. [PubMed] [Google Scholar]
  13. Lalande M., Hanauske-Abel H. M. A new compound which reversibly arrests T lymphocyte cell cycle near the G1/S boundary. Exp Cell Res. 1990 May;188(1):117–121. doi: 10.1016/0014-4827(90)90285-i. [DOI] [PubMed] [Google Scholar]
  14. Mehra V., Convit J., Rubinstein A., Bloom B. R. Activated suppressor T cells in leprosy. J Immunol. 1982 Nov;129(5):1946–1951. [PubMed] [Google Scholar]
  15. Morice W. G., Wiederrecht G., Brunn G. J., Siekierka J. J., Abraham R. T. Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem. 1993 Oct 25;268(30):22737–22745. [PubMed] [Google Scholar]
  16. Musher D. M., Schell R. F., Jones R. H., Jones A. M. Lymphocyte transformation in syphilis: an in vitro correlate of immune suppression in vivo? Infect Immun. 1975 Jun;11(6):1261–1264. doi: 10.1128/iai.11.6.1261-1264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pines J. Cyclins and their associated cyclin-dependent kinases in the human cell cycle. Biochem Soc Trans. 1993 Nov;21(4):921–925. doi: 10.1042/bst0210921. [DOI] [PubMed] [Google Scholar]
  18. Reiner N. E., Finke J. H. Interleukin 2 deficiency in murine Leishmaniasis donovani and its relationship to depressed spleen cell responses to phytohemagglutinin. J Immunol. 1983 Sep;131(3):1487–1491. [PubMed] [Google Scholar]
  19. Ribot S., Gal K., Goldblat M. V., Eslami H. H. The role of anaerobic bacteria in the pathogenesis of urinary tract infections. J Urol. 1981 Dec;126(6):852–853. doi: 10.1016/s0022-5347(17)54781-3. [DOI] [PubMed] [Google Scholar]
  20. Rivas V., Rogers T. J. Studies on the cellular nature of Candida albicans-induced suppression. J Immunol. 1983 Jan;130(1):376–379. [PubMed] [Google Scholar]
  21. Sabiston C. B., Jr, Gold W. A. Anaerobic bacteria in oral infections. Oral Surg Oral Med Oral Pathol. 1974 Aug;38(2):187–192. doi: 10.1016/0030-4220(74)90054-1. [DOI] [PubMed] [Google Scholar]
  22. Schmid I., Uittenbogaart C. H., Giorgi J. V. A gentle fixation and permeabilization method for combined cell surface and intracellular staining with improved precision in DNA quantification. Cytometry. 1991;12(3):279–285. doi: 10.1002/cyto.990120312. [DOI] [PubMed] [Google Scholar]
  23. Schwab J. H. Suppression of the immune response by microorganisms. Bacteriol Rev. 1975 Jun;39(2):121–143. doi: 10.1128/br.39.2.121-143.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scott P. A., Farrell J. P. Experimental cutaneous leishmaniasis. I. Nonspecific immunodepression in BALB/c mice infected with Leishmania tropica. J Immunol. 1981 Dec;127(6):2395–2400. [PubMed] [Google Scholar]
  25. Shenker B. J., DiRienzo J. M. Suppression of human peripheral blood lymphocytes by Fusobacterium nucleatum. J Immunol. 1984 May;132(5):2357–2362. [PubMed] [Google Scholar]
  26. Shenker B. J. Immunologic dysfunction in the pathogenesis of periodontal diseases. J Clin Periodontol. 1987 Oct;14(9):489–498. doi: 10.1111/j.1600-051x.1987.tb00989.x. [DOI] [PubMed] [Google Scholar]
  27. Shenker B. J., Rooney C., Vitale L., Shapiro I. M. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol. 1992;14(3):539–553. doi: 10.3109/08923979209005410. [DOI] [PubMed] [Google Scholar]
  28. Shenker B. J., Vitale L. A., Welham D. A. Immune suppression induced by Actinobacillus actinomycetemcomitans: effects on immunoglobulin production by human B cells. Infect Immun. 1990 Dec;58(12):3856–3862. doi: 10.1128/iai.58.12.3856-3862.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slots J. The predominant cultivable microflora of advanced periodontitis. Scand J Dent Res. 1977 Jan-Feb;85(2):114–121. doi: 10.1111/j.1600-0722.1977.tb00541.x. [DOI] [PubMed] [Google Scholar]
  30. Szepesi A., Gelfand E. W., Lucas J. J. Association of proliferating cell nuclear antigen with cyclin-dependent kinases and cyclins in normal and transformed human T lymphocytes. Blood. 1994 Nov 15;84(10):3413–3421. [PubMed] [Google Scholar]
  31. Tanguay D. A., Chiles T. C. Cell cycle-specific induction of Cdk2 expression in B lymphocytes following antigen receptor cross-linking. Mol Immunol. 1994 Jun;31(9):643–649. doi: 10.1016/0161-5890(94)90173-2. [DOI] [PubMed] [Google Scholar]
  32. Truant A. L., Menge S., Milliorn K., Lairscey R., Kelly M. T. Fusobacterium nucleatum pericarditis. J Clin Microbiol. 1983 Feb;17(2):349–351. doi: 10.1128/jcm.17.2.349-351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Williams B. L., Pantalone R. M., Sherris J. C. Subgingival microflora and periodontitis. J Periodontal Res. 1976 Feb;11(1):1–18. doi: 10.1111/j.1600-0765.1976.tb00045.x. [DOI] [PubMed] [Google Scholar]
  34. Wittgow W. C., Jr, Sabiston C. B., Jr Microorganisms from pulpal chambers of intact teeth with necrotic pulps. J Endod. 1975 May;1(5):168–171. doi: 10.1016/S0099-2399(75)80115-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES