Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4890–4893. doi: 10.1128/iai.63.12.4890-4893.1995

Identification of a 100-kilodalton putative coaggregation-mediating adhesin of Streptococcus gordonii DL1 (Challis).

D L Clemans 1, P E Kolenbrander 1
PMCID: PMC173700  PMID: 7591151

Abstract

Streptococcus gordonii DL1 (Challis) bears coaggregation-relevant surface proteins which mediate lactose-inhibitable coaggregations with other streptococci. Six spontaneously occurring coaggregation-defective (Cog-) mutants of wild-type strain S. gordonii DL1 unable to coaggregate with wild-type streptococcal partners were characterized. Antiserum raised against wild-type cells and absorbed with Cog- cells specifically blocked lactose-inhibitable coaggregations between S. gordonii DL1 and its streptococcal partner strains; it did not block lactose-noninhibitable coaggregations with actinomyces partners. Surface proteins were released from the cells by mild sonication treatment and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 100-kDa surface protein from S. gordonii DL1 was identified by immunoblot analysis with the mutant-absorbed antiserum. Each of the six Cog- mutants lacked the 100-kDa protein. Several other oral viridans streptococci that exhibit intrageneric lactose-inhibitable coaggregations expressed an immunoreactive protein with about the same size as the 100-kDa putative adhesin. It is proposed that the 100-kDa protein is the adhesin which mediates coaggregation between S. gordonii DL1 and its streptococcal partners. The role of this putative adhesin in accretion of streptococci in early colonization of the tooth surface is discussed.

Full Text

The Full Text of this article is available as a PDF (244.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clemans D. L., Kolenbrander P. E. Isolation and characterization of coaggregation-defective (Cog-) mutants of Streptococcus gordonii DL1 (Challis). J Ind Microbiol. 1995 Sep;15(3):193–197. doi: 10.1007/BF01569825. [DOI] [PubMed] [Google Scholar]
  2. Jenkinson H. F. Adherence, coaggregation, and hydrophobicity of Streptococcus gordonii associated with expression of cell surface lipoproteins. Infect Immun. 1992 Mar;60(3):1225–1228. doi: 10.1128/iai.60.3.1225-1228.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jenkinson H. F. Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett. 1994 Aug 15;121(2):133–140. doi: 10.1111/j.1574-6968.1994.tb07089.x. [DOI] [PubMed] [Google Scholar]
  4. Jenkinson H. F., Terry S. D., McNab R., Tannock G. W. Inactivation of the gene encoding surface protein SspA in Streptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces. Infect Immun. 1993 Aug;61(8):3199–3208. doi: 10.1128/iai.61.8.3199-3208.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kolenbrander P. E., Andersen R. N. Characterization of Streptococcus gordonii (S. sanguis) PK488 adhesin-mediated coaggregation with Actinomyces naeslundii PK606. Infect Immun. 1990 Sep;58(9):3064–3072. doi: 10.1128/iai.58.9.3064-3072.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kolenbrander P. E., Andersen R. N., Moore L. V. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol. 1990 Dec;56(12):3890–3894. doi: 10.1128/aem.56.12.3890-3894.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kolenbrander P. E. Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis. Infect Immun. 1982 Sep;37(3):1200–1208. doi: 10.1128/iai.37.3.1200-1208.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LeBlanc D. J., Hassell F. P. Transformation of Streptococcus sanguis Challis by plasmid deoxyribonucleic acid from Streptococcus faecalis. J Bacteriol. 1976 Oct;128(1):347–355. doi: 10.1128/jb.128.1.347-355.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. London J., Allen J. Purification and characterization of a Bacteroides loeschei adhesin that interacts with procaryotic and eucaryotic cells. J Bacteriol. 1990 May;172(5):2527–2534. doi: 10.1128/jb.172.5.2527-2534.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Manch-Citron J. N., London J. Expression of the Prevotella loescheii adhesin gene (plaA) is mediated by a programmed frameshifting hop. J Bacteriol. 1994 Apr;176(7):1944–1948. doi: 10.1128/jb.176.7.1944-1948.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maryanski J. H., Wittenberger C. L. Mannitol transport in Streptococcus mutans. J Bacteriol. 1975 Dec;124(3):1475–1481. doi: 10.1128/jb.124.3.1475-1481.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McNab R., Jenkinson H. F. Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties in Streptococcus gordonii. Mol Microbiol. 1992 Oct;6(20):2939–2949. doi: 10.1111/j.1365-2958.1992.tb01753.x. [DOI] [PubMed] [Google Scholar]
  13. McNab R., Jenkinson H. F., Loach D. M., Tannock G. W. Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol Microbiol. 1994 Nov;14(4):743–754. doi: 10.1111/j.1365-2958.1994.tb01311.x. [DOI] [PubMed] [Google Scholar]
  14. Nyvad B., Kilian M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res. 1987 Oct;95(5):369–380. doi: 10.1111/j.1600-0722.1987.tb01627.x. [DOI] [PubMed] [Google Scholar]
  15. PAKULA R., WALCZAK W. On the nature of competence of transformable streptococci. J Gen Microbiol. 1963 Apr;31:125–133. doi: 10.1099/00221287-31-1-125. [DOI] [PubMed] [Google Scholar]
  16. Skopek R. J., Liljemark W. F., Bloomquist C. G., Rudney J. D. Dental plaque development on defined streptococcal surfaces. Oral Microbiol Immunol. 1993 Feb;8(1):16–23. doi: 10.1111/j.1399-302x.1993.tb00537.x. [DOI] [PubMed] [Google Scholar]
  17. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weiss E. I., London J., Kolenbrander P. E., Andersen R. N. Fimbria-associated adhesin of Bacteroides loeschei that recognizes receptors on procaryotic and eucaryotic cells. Infect Immun. 1989 Sep;57(9):2912–2913. doi: 10.1128/iai.57.9.2912-2913.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES