Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4900–4906. doi: 10.1128/iai.63.12.4900-4906.1995

Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing.

R M Hamadeh 1, M M Estabrook 1, P Zhou 1, G A Jarvis 1, J M Griffiss 1
PMCID: PMC173702  PMID: 7591153

Abstract

alpha 1,3-Galactosyl antibodies (anti-Gal) are ubiquitous natural human serum and secretory polyclonal antibodies that bind to terminal galactose-alpha 1,3-galactose (alpha-galactosyl) residues. Serum immunoglobulin G (IgG) anti-Gal can block alternative complement pathway-mediated lysis of representative gram-negative enteric bacteria that bind it to lipopolysaccharide alpha-galactosyl structures, thereby promoting survival of such bacteria in the nonimmune host. We wanted to know whether anti-Gal also could bind to the lipooligosaccharides (LOS) of Neisseria meningitidis. To our surprise, we found that serum and secretory anti-Gal bound to pili but not to LOS of certain strains. This suggested the presence of an immunogenic pilus carbohydrate epitope. Mild periodate oxidation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated outer membrane preparations from strains that bound anti-Gal followed by labeling of the neoaldehyde groups resulted in the labeling of bands that corresponded to pilin and LOS, confirming that pilin contains carbohydrate structures. A Bandeiraea simplicifolia lectin that also binds terminal alpha 1,3-galactosyl residues also bound to pilin. Serum IgG, IgA, and IgM anti-Gal as well as colostral secretory IgA anti-Gal bound to pilin, as judged by immunoblotting, and to the pili of intact piliated organisms, as judged by immunoelectron microscopy. Total serum anti-Gal (IgG, IgA, and IgM) and purified serum IgA1 anti-Gal, but not its purified IgG isotype, blocked complement-mediated lysis of a piliated meningococcal strain that bound anti-Gal to its pili. Colostral anti-Gal secretory IgA blocked killing of the same strain. Thus, anti-Gal IgA may promote disease when it binds to the pili of N. meningitidis strains.

Full Text

The Full Text of this article is available as a PDF (529.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apicella M. A., Westerink M. A., Morse S. A., Schneider H., Rice P. A., Griffiss J. M. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J Infect Dis. 1986 Mar;153(3):520–526. doi: 10.1093/infdis/153.3.520. [DOI] [PubMed] [Google Scholar]
  2. Baker C. J., Griffiss J. M. Influence of age on serogroup distribution of endemic meningococcal disease. Pediatrics. 1983 Jun;71(6):923–926. [PubMed] [Google Scholar]
  3. Blake M. S., MacDonald C. M., Klugman K. P. Colony morphology of piliated Neisseria meningitidis. J Exp Med. 1989 Nov 1;170(5):1727–1736. doi: 10.1084/jem.170.5.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broud D. D., Griffiss J. M., Baker C. J. Heterogenity of serotypes of Neisseria meningitidis that cause endemic disease. J Infect Dis. 1979 Oct;140(4):465–470. doi: 10.1093/infdis/140.4.465. [DOI] [PubMed] [Google Scholar]
  5. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  6. Colten H. R., Bienenstock J. Lack of C3 activation through classical or alternate pathways by human secretory IgA anti blood group A antibody. Adv Exp Med Biol. 1974;45(0):305–308. doi: 10.1007/978-1-4613-4550-3_36. [DOI] [PubMed] [Google Scholar]
  7. Craven D. E., Peppler M. S., Frasch C. E., Mocca L. F., McGrath P. P., Washington G. Adherence of isolates of Neisseria meningitidis from patients and carriers to human buccal epithelial cells. J Infect Dis. 1980 Oct;142(4):556–568. doi: 10.1093/infdis/142.4.556. [DOI] [PubMed] [Google Scholar]
  8. DeVoe I. W., Gilchrist J. E. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease. J Exp Med. 1975 Feb 1;141(2):297–305. doi: 10.1084/jem.141.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eddie D. S., Schulkind M. L., Robbins J. B. The isolation and biologic activities of purified secretory IgA and IgG anti-Salmonella typhimurium "O" antibodies from rabbit intestinal fluid and colostrum. J Immunol. 1971 Jan;106(1):181–190. [PubMed] [Google Scholar]
  10. Estabrook M. M., Christopher N. C., Griffiss J. M., Baker C. J., Mandrell R. E. Sialylation and human neutrophil killing of group C Neisseria meningitidis. J Infect Dis. 1992 Nov;166(5):1079–1088. doi: 10.1093/infdis/166.5.1079. [DOI] [PubMed] [Google Scholar]
  11. Estabrook M. M., Mandrell R. E., Apicella M. A., Griffiss J. M. Measurement of the human immune response to meningococcal lipooligosaccharide antigens by using serum to inhibit monoclonal antibody binding to purified lipooligosaccharide. Infect Immun. 1990 Jul;58(7):2204–2213. doi: 10.1128/iai.58.7.2204-2213.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galili U., Clark M. R., Shohet S. B. Excessive binding of natural anti-alpha-galactosyl immunoglobin G to sickle erythrocytes may contribute to extravascular cell destruction. J Clin Invest. 1986 Jan;77(1):27–33. doi: 10.1172/JCI112286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Galili U., Flechner I., Knyszynski A., Danon D., Rachmilewitz E. A. The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Br J Haematol. 1986 Feb;62(2):317–324. doi: 10.1111/j.1365-2141.1986.tb02935.x. [DOI] [PubMed] [Google Scholar]
  14. Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenblatt J. J., Floyd K., Philipps M. E., Frasch C. E. Morphological differences in Neisseria meningitidis pili. Infect Immun. 1988 Sep;56(9):2356–2362. doi: 10.1128/iai.56.9.2356-2362.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Griffiss J. M. Bactericidal activity of meningococcal antisera. Blocking by IgA of lytic antibody in human convalescent sera. J Immunol. 1975 Jun;114(6):1779–1784. [PubMed] [Google Scholar]
  18. Griffiss J. M., Brandt B. L., Broud D. D., Goroff D. K., Baker C. J. Immune response of infants and children to disseminated infections with Neisseria meningitidis. J Infect Dis. 1984 Jul;150(1):71–79. doi: 10.1093/infdis/150.1.71. [DOI] [PubMed] [Google Scholar]
  19. Griffiss J. M., Goroff D. K. IgA blocks IgM and IgG-initiated immune lysis by separate molecular mechanisms. J Immunol. 1983 Jun;130(6):2882–2885. [PubMed] [Google Scholar]
  20. Gubish E. R., Jr, Chen K. C., Buchanan T. M. Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect Immun. 1982 Jul;37(1):189–194. doi: 10.1128/iai.37.1.189-194.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hall W. H., Manion R. E., Zinneman H. H. Blocking serum lysis of Brucella abortus by hyperimmune rabbit immunoglubulin A. J Immunol. 1971 Jul;107(1):41–46. [PubMed] [Google Scholar]
  22. Hamadeh R. M., Galili U., Zhou P., Griffiss J. M. Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin Diagn Lab Immunol. 1995 Mar;2(2):125–131. doi: 10.1128/cdli.2.2.125-131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hamadeh R. M., Jarvis G. A., Galili U., Mandrell R. E., Zhou P., Griffiss J. M. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. 1992 Apr;89(4):1223–1235. doi: 10.1172/JCI115706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hamadeh R. M., Mandrell R. E., Griffiss J. M. Immunophysical characterization of human isolates of Serratia marcescens. J Clin Microbiol. 1990 Jan;28(1):20–26. doi: 10.1128/jcm.28.1.20-26.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jarvis G. A., Griffiss J. M. Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J Immunol. 1991 Sep 15;147(6):1962–1967. [PubMed] [Google Scholar]
  27. Jarvis G. A., Griffiss J. M. Human IgA1 initiates complement-mediated killing of Neisseria meningitidis. J Immunol. 1989 Sep 1;143(5):1703–1709. [PubMed] [Google Scholar]
  28. Jarvis G. A., Vedros N. A. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect Immun. 1987 Jan;55(1):174–180. doi: 10.1128/iai.55.1.174-180.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim J. J., Mandrell R. E., Griffiss J. M. Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes. Infect Immun. 1989 Feb;57(2):602–608. doi: 10.1128/iai.57.2.602-608.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kim J. J., Mandrell R. E., Hu Z., Westerink M. A., Poolman J. T., Griffiss J. M. Electromorphic characterization and description of conserved epitopes of the lipooligosaccharides of group A Neisseria meningitidis. Infect Immun. 1988 Oct;56(10):2631–2638. doi: 10.1128/iai.56.10.2631-2638.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Mandrell R. E., Kim J. J., John C. M., Gibson B. W., Sugai J. V., Apicella M. A., Griffiss J. M., Yamasaki R. Endogenous sialylation of the lipooligosaccharides of Neisseria meningitidis. J Bacteriol. 1991 May;173(9):2823–2832. doi: 10.1128/jb.173.9.2823-2832.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McCutchan J. A., Levine S., Braude A. I. Influence of colony type on susceptibility of gonococci to killing by human serum. J Immunol. 1976 Jun;116(6):1652–1655. [PubMed] [Google Scholar]
  34. Musher D. M., Goree A., Baughn R. E., Birdsall H. H. Immunoglobulin A from bronchopulmonary secretions blocks bactericidal and opsonizing effects of antibody to nontypable Haemophilus influenzae. Infect Immun. 1984 Jul;45(1):36–40. doi: 10.1128/iai.45.1.36-40.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Punsalang A. P., Jr, Sawyer W. D. Role of pili in the virulence of Neisseria gonorrhoeae. Infect Immun. 1973 Aug;8(2):255–263. doi: 10.1128/iai.8.2.255-263.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Robertson J. N., Vincent P., Ward M. E. The preparation and properties of gonococcal pili. J Gen Microbiol. 1977 Sep;102(1):169–177. doi: 10.1099/00221287-102-1-169. [DOI] [PubMed] [Google Scholar]
  37. Russell-Jones G. J., Ey P. L., Reynolds B. L. The ability of IgA to inhibit the complement-mediated lysis of target red blood cells sensitized with IgG antibody. Mol Immunol. 1980 Sep;17(9):1173–1180. doi: 10.1016/0161-5890(80)90114-5. [DOI] [PubMed] [Google Scholar]
  38. Schiller N. L., Millard R. L. Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr Res. 1983 Sep;17(9):747–752. doi: 10.1203/00006450-198309000-00013. [DOI] [PubMed] [Google Scholar]
  39. Stephens D. S., Edwards K. M., Morris F., McGee Z. A. Pili and outer membrane appendages on Neisseria meningitidis in the cerebrospinal fluid of an infant. J Infect Dis. 1982 Oct;146(4):568–568. doi: 10.1093/infdis/146.4.568. [DOI] [PubMed] [Google Scholar]
  40. Stephens D. S., Farley M. M. Pathogenic events during infection of the human nasopharynx with Neisseria meningitidis and Haemophilus influenzae. Rev Infect Dis. 1991 Jan-Feb;13(1):22–33. doi: 10.1093/clinids/13.1.22. [DOI] [PubMed] [Google Scholar]
  41. Stephens D. S., McGee Z. A. Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell. J Infect Dis. 1981 Apr;143(4):525–532. doi: 10.1093/infdis/143.4.525. [DOI] [PubMed] [Google Scholar]
  42. Stephens D. S., Whitney A. M., Schoolnik G. K., Zollinger W. D. Common epitopes of pilin of Neisseria meningitidis. J Infect Dis. 1988 Aug;158(2):332–342. doi: 10.1093/infdis/158.2.332. [DOI] [PubMed] [Google Scholar]
  43. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., Ferguson D. J. Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol. 1993 Dec;10(5):1013–1028. doi: 10.1111/j.1365-2958.1993.tb00972.x. [DOI] [PubMed] [Google Scholar]
  44. Yamasaki R., Griffiss J. M., Quinn K. P., Mandrell R. E. Neuraminic acid is alpha 2-->3 linked in the lipooligosaccharide of Neisseria meningitidis serogroup B strain 6275. J Bacteriol. 1993 Jul;175(14):4565–4568. doi: 10.1128/jb.175.14.4565-4568.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zollinger W. D., Mandrell R. E. Outer-membrane protein and lipopolysaccharide serotyping of Neisseria meningitidis by inhibition of a solid-phase radioimmunoassay. Infect Immun. 1977 Nov;18(2):424–433. doi: 10.1128/iai.18.2.424-433.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zollinger W. D., Mandrell R. E. Type-specific antigens of group A Neisseria meningitidis: lipopolysaccharide and heat-modifiable outer membrane proteins. Infect Immun. 1980 May;28(2):451–458. doi: 10.1128/iai.28.2.451-458.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES