Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Dec;63(12):4912–4916. doi: 10.1128/iai.63.12.4912-4916.1995

An oligomer of the major outer membrane protein of Chlamydia psittaci is recognized by monoclonal antibodies which protect mice from abortion.

C de Sa 1, A Souriau 1, F Bernard 1, J Salinas 1, A Rodolakis 1
PMCID: PMC173704  PMID: 7591155

Abstract

Monoclonal antibodies (MAbs) were generated against an ovine abortive strain of Chlamydia psittaci. A plaque reduction assay was used to select 19 neutralizing antibodies which appeared to be heterogeneous in isotype, specificity, and recognized proteins. Different neutralizing MAbs were tested for their protective abilities against abortion in a pregnant-mouse model. All of the protective MAbs selected had the same isotype, were serotype 1 specific, and recognized a protein of about 110 kDa by immunoblotting. The recognized epitopes were resistant to sodium dodecyl sulfate and reducing agents, but all of them were heat sensitive. The protein was able to form disulfide-linked polymers. Immunological cross-reaction studies with rabbit sera showed a link between the 110-kDa protein and the major outer membrane protein (MOMP). The 110-kDa protein was purified by immunoaffinity and shown to be dissociated after heating into MOMP by silver staining and immunoblotting. These results show homogeneity among protective MAbs directed to heat-sensitive epitopes located on an oligomer of the MOMP of C. psittaci.

Full Text

The Full Text of this article is available as a PDF (514.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. A., Van Deusen R. A. Production and partial characterization of monoclonal antibodies to four Chlamydia psittaci isolates. Infect Immun. 1988 Aug;56(8):2075–2079. doi: 10.1128/iai.56.8.2075-2079.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando S., Takashima I., Hashimoto N. Neutralization of Chlamydia psittaci with monoclonal antibodies. Microbiol Immunol. 1993;37(10):753–758. doi: 10.1111/j.1348-0421.1993.tb01701.x. [DOI] [PubMed] [Google Scholar]
  3. Batteiger B. E., Rank R. G., Bavoil P. M., Soderberg L. S. Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. J Gen Microbiol. 1993 Dec;139(12):2965–2972. doi: 10.1099/00221287-139-12-2965. [DOI] [PubMed] [Google Scholar]
  4. Bavoil P., Ohlin A., Schachter J. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect Immun. 1984 May;44(2):479–485. doi: 10.1128/iai.44.2.479-485.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bentley A. T., Klebba P. E. Effect of lipopolysaccharide structure on reactivity of antiporin monoclonal antibodies with the bacterial cell surface. J Bacteriol. 1988 Mar;170(3):1063–1068. doi: 10.1128/jb.170.3.1063-1068.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Birkelund S., Lundemose A. G., Christiansen G. Chemical cross-linking of Chlamydia trachomatis. Infect Immun. 1988 Mar;56(3):654–659. doi: 10.1128/iai.56.3.654-659.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buxton D. Potential danger to pregnant women of Chlamydia psittaci from sheep. Vet Rec. 1986 May 3;118(18):510–511. doi: 10.1136/vr.118.18.510. [DOI] [PubMed] [Google Scholar]
  8. Buzoni-Gatel D., Bernard F., Andersen A., Rodolakis A. Protective effect of polyclonal and monoclonal antibodies against abortion in mice infected by Chlamydia psittaci. Vaccine. 1990 Aug;8(4):342–346. doi: 10.1016/0264-410x(90)90092-z. [DOI] [PubMed] [Google Scholar]
  9. Buzoni-Gatel D., Rodolakis A., Plommet M. T cell mediated and humoral immunity in a mouse Chlamydia psittaci systemic infection. Res Vet Sci. 1987 Jul;43(1):59–63. [PubMed] [Google Scholar]
  10. Caldwell H. D., Kromhout J., Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981 Mar;31(3):1161–1176. doi: 10.1128/iai.31.3.1161-1176.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeLong W. J., Magee W. E. Distinguishing between ovine abortion and ovine arthritis Chlamydia psittaci isolates with specific monoclonal antibodies. Am J Vet Res. 1986 Jul;47(7):1520–1523. [PubMed] [Google Scholar]
  12. Fukushi H., Hirai K. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Bacteriol. 1992 Apr;42(2):306–308. doi: 10.1099/00207713-42-2-306. [DOI] [PubMed] [Google Scholar]
  13. Hayes L. J., Conlan J. W., Everson J. S., Ward M. E., Clarke I. N. Chlamydia trachomatis major outer membrane protein epitopes expressed as fusions with LamB in an attenuated aro A strain of Salmonella typhimurium; their application as potential immunogens. J Gen Microbiol. 1991 Jul;137(7):1557–1564. doi: 10.1099/00221287-137-7-1557. [DOI] [PubMed] [Google Scholar]
  14. Herring A. J., Tan T. W., Baxter S., Inglis N. F., Dunbar S. Sequence analysis of the major outer membrane protein gene of an ovine abortion strain of Chlamydia psittaci. FEMS Microbiol Lett. 1989 Nov;53(1-2):153–158. doi: 10.1016/0378-1097(89)90383-2. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. McCafferty M. C., Herring A. J., Andersen A. A., Jones G. E. Electrophoretic analysis of the major outer membrane protein of Chlamydia psittaci reveals multimers which are recognized by protective monoclonal antibodies. Infect Immun. 1995 Jun;63(6):2387–2389. doi: 10.1128/iai.63.6.2387-2389.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newhall W. J., Jones R. B. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J Bacteriol. 1983 May;154(2):998–1001. doi: 10.1128/jb.154.2.998-1001.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992 Feb;6(4):435–442. doi: 10.1111/j.1365-2958.1992.tb01487.x. [DOI] [PubMed] [Google Scholar]
  19. Poole K., Hancock R. E. Phosphate-starvation-induced outer membrane proteins of members of the families Enterobacteriaceae and Pseudomonodaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P of Pseudomonas aeruginosa. J Bacteriol. 1986 Mar;165(3):987–993. doi: 10.1128/jb.165.3.987-993.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rocque W. J., Coughlin R. T., McGroarty E. J. Lipopolysaccharide tightly bound to porin monomers and trimers from Escherichia coli K-12. J Bacteriol. 1987 Sep;169(9):4003–4010. doi: 10.1128/jb.169.9.4003-4010.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rodolakis A. In vitro and in vivo properties of chemically induced temperature-sensitive mutants of Chlamydia psittaci var. ovis: screening in a murine model. Infect Immun. 1983 Nov;42(2):525–530. doi: 10.1128/iai.42.2.525-530.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schachter J., Banks J., Sugg N., Sung M., Storz J., Meyer K. F. Serotyping of Chlamydia. I. Isolates of ovine origin. Infect Immun. 1974 Jan;9(1):92–94. doi: 10.1128/iai.9.1.92-94.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schachter J., Caldwell H. D. Chlamydiae. Annu Rev Microbiol. 1980;34:285–309. doi: 10.1146/annurev.mi.34.100180.001441. [DOI] [PubMed] [Google Scholar]
  24. Singh S. P., Upshaw Y., Abdullah T., Singh S. R., Klebba P. E. Structural relatedness of enteric bacterial porins assessed with monoclonal antibodies to Salmonella typhimurium OmpD and OmpC. J Bacteriol. 1992 Mar;174(6):1965–1973. doi: 10.1128/jb.174.6.1965-1973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Souriau A., Le Rouzic E., Bernard F., Rodolakis A. Differentiation of abortion-inducing and intestinal strains of Chlamydia psittaci isolated from ruminants by the microimmunofluorescence test. Vet Rec. 1993 Feb 27;132(9):217–219. doi: 10.1136/vr.132.9.217. [DOI] [PubMed] [Google Scholar]
  26. Souriau A., Salinas J., De Sa C., Layachi K., Rodolakis A. Identification of subspecies- and serotype 1-specific epitopes on the 80- to 90-kilodalton protein region of Chlamydia psittaci that may be useful for diagnosis of chlamydial induced abortion. Am J Vet Res. 1994 Apr;55(4):510–514. [PubMed] [Google Scholar]
  27. Storz J., Marriott M. E., Thornley W. R. The dynamics of the blood infectious phase in psittacosis-induced abortions in animals. J Infect Dis. 1968 Jun;118(3):333–339. doi: 10.1093/infdis/118.3.333. [DOI] [PubMed] [Google Scholar]
  28. Tan T. W., Herring A. J., Anderson I. E., Jones G. E. Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect Immun. 1990 Sep;58(9):3101–3108. doi: 10.1128/iai.58.9.3101-3108.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toyofuku H., Takashima I., Arikawa J., Hashimoto N. Monoclonal antibodies against Chlamydia psittaci. Microbiol Immunol. 1986;30(10):945–955. doi: 10.1111/j.1348-0421.1986.tb03025.x. [DOI] [PubMed] [Google Scholar]
  31. Tsang V. C., Wilkins P. P. Optimum dissociating condition for immunoaffinity and preferential isolation of antibodies with high specific activity. J Immunol Methods. 1991 Apr 25;138(2):291–299. doi: 10.1016/0022-1759(91)90178-i. [DOI] [PubMed] [Google Scholar]
  32. Wang S. P., Grayston J. T. Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test. Am J Ophthalmol. 1970 Sep;70(3):367–374. doi: 10.1016/0002-9394(70)90096-6. [DOI] [PubMed] [Google Scholar]
  33. Whitfield C., Hancock R. E., Costerton J. W. Outer membrane protein K of Escherichia coli: purification and pore-forming properties in lipid bilayer membranes. J Bacteriol. 1983 Nov;156(2):873–879. doi: 10.1128/jb.156.2.873-879.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhang Y. X., Stewart S., Joseph T., Taylor H. R., Caldwell H. D. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. J Immunol. 1987 Jan 15;138(2):575–581. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES