Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jan;64(1):1–9. doi: 10.1128/iai.64.1.1-9.1996

Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains.

M R Lagranderie 1, A M Balazuc 1, E Deriaud 1, C D Leclerc 1, M Gheorghiu 1
PMCID: PMC173719  PMID: 8557324

Abstract

Among the various parameters which may contribute to Mycobacterium bovis BCG vaccination efficiency, the choice of the vaccine strain may play an important role. In the present study, we therefore compared the immunogenicity of five different BCG strains that are commonly used for BCG vaccine production (Glaxo 1077, Japanese 172, Pasteur 1173P2, Prague, and Russian strains). The comparison of the growth capacity of these BCG strains in BALB/c and C3H mice demonstrated that a great difference exists between the capacity of various BCG strains to multiply and persist in target organs. A much lower recovery of BCG could be shown in mice immunized with Prague and Japanese BCG strains. T-cell responses of BCG-immunized mice were also examined by analyzing T-cell proliferative responses, cytokine production, delayed-type hypersensitivity responses, and cytotoxic activity. All these assays demonstrated that BCG immunization induced strong CD4+ T-cell responses, mostly of the Th1 type, as demonstrated by interleukin-2 and gamma interferon production. These studies also demonstrated that there are differences between BCG strains in stimulating these T-cell responses. A lack of induction of cytotoxic activity was observed following immunization with the Japanese strain. Lower anti-purified protein derivative antibody responses were also observed after intravenous or oral immunization with this BCG strain. Finally, the protective activity of these BCG strains was tested by measuring the capacity of immunized mice to eliminate recombinant Pasteur and Japanese BCG strains which expressed beta-galactosidase. The results of these experiments clearly demonstrated that the Prague and Japanese strains were unable to protect mice against a second mycobacterial challenge whereas mice immunized with the Glaxo, Pasteur, or Russian strain eliminated the recombinant BCG very efficiently. Altogether, the results of the present study strongly support the view that there are considerable differences in the immunogenicity of various BCG vaccine strains and that these differences may play a major role in BCG vaccination efficiency.

Full Text

The Full Text of this article is available as a PDF (326.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Zeid C., Rook G. A., Minnikin D. E., Parlett J. H., Osborn T. W., Grange J. M. Effect of the method of preparation of bacille Calmette-Guérin (BCG) vaccine on the properties of four daughter strains. J Appl Bacteriol. 1987 Nov;63(5):449–453. doi: 10.1111/j.1365-2672.1987.tb04867.x. [DOI] [PubMed] [Google Scholar]
  2. Abou-Zeid C., Smith I., Grange J., Steele J., Rook G. Subdivision of daughter strains of bacille Calmette-Guérin (BCG) according to secreted protein patterns. J Gen Microbiol. 1986 Nov;132(11):3047–3053. doi: 10.1099/00221287-132-11-3047. [DOI] [PubMed] [Google Scholar]
  3. Clemens J. D., Chuong J. J., Feinstein A. R. The BCG controversy. A methodological and statistical reappraisal. JAMA. 1983 May 6;249(17):2362–2369. [PubMed] [Google Scholar]
  4. Colditz G. A., Brewer T. F., Berkey C. S., Wilson M. E., Burdick E., Fineberg H. V., Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994 Mar 2;271(9):698–702. [PubMed] [Google Scholar]
  5. Comstock G. W. Evaluating vaccination effectiveness and vaccine efficacy by means of case-control studies. Epidemiol Rev. 1994;16(1):77–89. doi: 10.1093/oxfordjournals.epirev.a036147. [DOI] [PubMed] [Google Scholar]
  6. DUBOS R. J., PIERCE C. H. Differential characteristics in vitro and in vivo of several substrains of BCG. IV. Immunizing effectiveness. Am Rev Tuberc. 1956 Nov;74(5):699–717. doi: 10.1164/artpd.1956.74.5.699. [DOI] [PubMed] [Google Scholar]
  7. Fayolle C., Deriaud E., Leclerc C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol. 1991 Dec 15;147(12):4069–4073. [PubMed] [Google Scholar]
  8. Fomukong N. G., Dale J. W., Osborn T. W., Grange J. M. Use of gene probes based on the insertion sequence IS986 to differentiate between BCG vaccine strains. J Appl Bacteriol. 1992 Feb;72(2):126–133. doi: 10.1111/j.1365-2672.1992.tb01813.x. [DOI] [PubMed] [Google Scholar]
  9. Gheorghiu M., Lagranderie M. R., Gicquel B. M., Leclerc C. D. Mycobacterium bovis BCG priming induces a strong potentiation of the antibody response induced by recombinant BCG expressing a foreign antigen. Infect Immun. 1994 Oct;62(10):4287–4295. doi: 10.1128/iai.62.10.4287-4295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gheorghiu M., Lagrange P. H., Fillastre C. The stability and immunogenicity of a dispersed-grown freeze-dried Pasteur BCG vaccine. J Biol Stand. 1988 Jan;16(1):15–26. doi: 10.1016/0092-1157(88)90025-x. [DOI] [PubMed] [Google Scholar]
  11. Gheorghiu M., Lagrange P. H. Viability, heat stability and immunogenicity of four BCG vaccines prepared from four different BCG strains. Ann Immunol (Paris) 1983 Jan-Feb;134C(1):125–147. doi: 10.1016/s0769-2625(83)80157-3. [DOI] [PubMed] [Google Scholar]
  12. Kaufmann S. H. CD8+ T lymphocytes in intracellular microbial infections. Immunol Today. 1988 Jun;9(6):168–174. doi: 10.1016/0167-5699(88)91292-3. [DOI] [PubMed] [Google Scholar]
  13. Lagranderie M., Murray A., Gicquel B., Leclerc C., Gheorghiu M. Oral immunization with recombinant BCG induces cellular and humoral immune responses against the foreign antigen. Vaccine. 1993 Oct;11(13):1283–1290. doi: 10.1016/0264-410x(93)90096-g. [DOI] [PubMed] [Google Scholar]
  14. Mackaness G. B., Blanden R. V. Cellular immunity. Prog Allergy. 1967;11:89–140. [PubMed] [Google Scholar]
  15. Minnikin D. E., Minnikin S. M., Dobson G., Goodfellow M., Portaels F., van den Breen L., Sesardic D. Mycolic acid patterns of four vaccine strains of Mycobacterium bovis BCG. J Gen Microbiol. 1983 Mar;129(3):889–891. doi: 10.1099/00221287-129-3-889. [DOI] [PubMed] [Google Scholar]
  16. Munk M. E., De Bruyn J., Gras H., Kaufmann S. H. The Mycobacterium bovis 32-kilodalton protein antigen induces human cytotoxic T-cell responses. Infect Immun. 1994 Feb;62(2):726–728. doi: 10.1128/iai.62.2.726-728.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray A., Winter N., Lagranderie M., Hill D. F., Rauzier J., Timm J., Leclerc C., Moriarty K. M., Gheorghiu M., Gicquel B. Expression of Escherichia coli beta-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol. 1992 Nov;6(22):3331–3342. doi: 10.1111/j.1365-2958.1992.tb02201.x. [DOI] [PubMed] [Google Scholar]
  18. Orme I. M. Immunity to mycobacteria. Curr Opin Immunol. 1993 Aug;5(4):497–502. doi: 10.1016/0952-7915(93)90029-r. [DOI] [PubMed] [Google Scholar]
  19. Osborn T. W. Changes in BCG strains. Tubercle. 1983 Mar;64(1):1–13. doi: 10.1016/0041-3879(83)90044-2. [DOI] [PubMed] [Google Scholar]
  20. Rook G. A., Steele J., Ainsworth M., Champion B. R. Activation of macrophages to inhibit proliferation of Mycobacterium tuberculosis: comparison of the effects of recombinant gamma-interferon on human monocytes and murine peritoneal macrophages. Immunology. 1986 Nov;59(3):333–338. [PMC free article] [PubMed] [Google Scholar]
  21. Sekhuis V. M., Freudenstein H., Sirks J. L. Report on results of a collaborative assay of BCG vaccines organized by the International Associaton of Biological Standardization. J Biol Stand. 1977;5(2):85–109. doi: 10.1016/0092-1157(77)90004-x. [DOI] [PubMed] [Google Scholar]
  22. Skamene E. Genetic control of resistance to mycobacterial infection. Curr Top Microbiol Immunol. 1986;124:49–66. doi: 10.1007/978-3-642-70986-9_4. [DOI] [PubMed] [Google Scholar]
  23. Smith D., Harding G., Chan J., Edwards M., Hank J., Muller D., Sobhi F. Potency of 10 BCG vaccines as evaluated by their influence on the bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Stand. 1979 Jul;7(3):179–197. doi: 10.1016/s0092-1157(79)80021-9. [DOI] [PubMed] [Google Scholar]
  24. Stover C. K., Bansal G. P., Hanson M. S., Burlein J. E., Palaszynski S. R., Young J. F., Koenig S., Young D. B., Sadziene A., Barbour A. G. Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J Exp Med. 1993 Jul 1;178(1):197–209. doi: 10.1084/jem.178.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. doi: 10.1038/351456a0. [DOI] [PubMed] [Google Scholar]
  26. Winter N., Lagranderie M., Gangloff S., Leclerc C., Gheorghiu M., Gicquel B. Recombinant BCG strains expressing the SIVmac251nef gene induce proliferative and CTL responses against nef synthetic peptides in mice. Vaccine. 1995 Apr;13(5):471–478. doi: 10.1016/0264-410x(94)00001-4. [DOI] [PubMed] [Google Scholar]
  27. Winter N., Lagranderie M., Rauzier J., Timm J., Leclerc C., Guy B., Kieny M. P., Gheorghiu M., Gicquel B. Expression of heterologous genes in Mycobacterium bovis BCG: induction of a cellular response against HIV-1 Nef protein. Gene. 1991 Dec 20;109(1):47–54. doi: 10.1016/0378-1119(91)90587-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES