Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jan;64(1):28–36. doi: 10.1128/iai.64.1.28-36.1996

Immunologic characteristics of a Streptococcus mutans glucosyltransferase B sucrose-binding site peptide-cholera toxin B-subunit chimeric protein.

P Laloi 1, C L Munro 1, K R Jones 1, F L Macrina 1
PMCID: PMC173723  PMID: 8557352

Abstract

Glucosyltranferases (Gtfs) produced by the mutans streptococci are recognized as virulence factors in dental caries, and the inhibition of Gtfs by secretory immunoglobulin A is predicted to provide protection against this disease. The basis of such mucosal immunity is linked to the ability to reliably stimulate production of secretory immunoglobulin A against Gtfs. In this regard, we are exploring the immunogenicities of various Gtf peptides genetically fused to the B subunit of cholera toxin (CTB), a known mucosal adjuvant. In this work, we have created a gene fusion linking the GtfB active-site (AS) peptide DANFDSIRVDAVDNVDADLLQIA to the amino terminus of CTB. This sequence, deduced from the nucleotide sequence of gtfB from Streptococcus mutans GS5, has been found to be strongly conserved in Gtfs from several mutans streptococci. We have purified this recombinant protein (AS:CTB) from Escherichia coli carrying the fusion gene under the control of the lactose operon promoter. This protein was immunogenic in rabbits and produced specific serum antibodies against both the Gtf peptide and the CTB moiety. The antiserum was tested for its ability to inhibit GtfB activity obtained from a mutant of S. mutans able to make only this enzyme and none of the other usual Gtfs or fructosyltransferase. Approximately 50% of the GtfB activity was inhibited in such assays. These results suggest that the AS of this enzyme is accessible to antibody binding and that this region of the protein may be considered a vulnerable target for vaccine design and development. The AS:CTB was able to bind GM1, ganglioside in enzyme-linked immunosorbent assays, indicating that the recombinant protein retained this property, which is though to be critical to the mucosal immunoadjuvant properties of CTB. Thus, this protein may be promising as a candidate anticaries vaccinogen alone or in combination with other Gtf peptides or conjugates.

Full Text

The Full Text of this article is available as a PDF (350.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo H., Matsumura T., Kodama T., Ohta H., Fukui K., Kato K., Kagawa H. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase). J Bacteriol. 1991 Feb;173(3):989–996. doi: 10.1128/jb.173.3.989-996.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aoki H., Shiroza T., Hayakawa M., Sato S., Kuramitsu H. K. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986 Sep;53(3):587–594. doi: 10.1128/iai.53.3.587-594.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessen D., Fischetti V. A. Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun. 1988 Oct;56(10):2666–2672. doi: 10.1128/iai.56.10.2666-2672.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  5. Chia J. S., Hsu T. Y., Teng L. J., Chen J. Y., Hahn L. J., Yang C. S. Glucosyltransferase gene polymorphism among Streptococcus mutans strains. Infect Immun. 1991 May;59(5):1656–1660. doi: 10.1128/iai.59.5.1656-1660.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chia J. S., Lin R. H., Lin S. W., Chen J. Y., Yang C. S. Inhibition of glucosyltransferase activities of Streptococcus mutans by a monoclonal antibody to a subsequence peptide. Infect Immun. 1993 Nov;61(11):4689–4695. doi: 10.1128/iai.61.11.4689-4695.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chia J. S., Lin S. W., Hsu T. Y., Chen J. Y., Kwan H. W., Yang C. S. Analysis of a DNA polymorphic region in the gtfB and gtfC genes of Streptococcus mutans. Infect Immun. 1993 Apr;61(4):1563–1566. doi: 10.1128/iai.61.4.1563-1566.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dertzbaugh M. T., Elson C. O. Reduction in oral immunogenicity of cholera toxin B subunit by N-terminal peptide addition. Infect Immun. 1993 Feb;61(2):384–390. doi: 10.1128/iai.61.2.384-390.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dertzbaugh M. T., Macrina F. L. Inhibition of Streptococcus mutans glucosyltransferase activity by antiserum to a subsequence peptide. Infect Immun. 1990 Jun;58(6):1509–1513. doi: 10.1128/iai.58.6.1509-1513.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dertzbaugh M. T., Macrina F. L. Plasmid vectors for constructing translational fusions to the B subunit of cholera toxin. Gene. 1989 Oct 30;82(2):335–342. doi: 10.1016/0378-1119(89)90060-7. [DOI] [PubMed] [Google Scholar]
  11. Dertzbaugh M. T., Peterson D. L., Macrina F. L. Cholera toxin B-subunit gene fusion: structural and functional analysis of the chimeric protein. Infect Immun. 1990 Jan;58(1):70–79. doi: 10.1128/iai.58.1.70-79.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devulapalle K. S., Mooser G. Subsite specificity of the active site of glucosyltransferases from Streptococcus sobrinus. J Biol Chem. 1994 Apr 22;269(16):11967–11971. [PubMed] [Google Scholar]
  13. Ferretti J. J., Gilpin M. L., Russell R. R. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol. 1987 Sep;169(9):4271–4278. doi: 10.1128/jb.169.9.4271-4278.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giffard P. M., Allen D. M., Milward C. P., Simpson C. L., Jacques N. A. Sequence of the gtfK gene of Streptococcus salivarius ATCC 25975 and evolution of the gtf genes of oral streptococci. J Gen Microbiol. 1993 Jul;139(7):1511–1522. doi: 10.1099/00221287-139-7-1511. [DOI] [PubMed] [Google Scholar]
  15. Giffard P. M., Simpson C. L., Milward C. P., Jacques N. A. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol. 1991 Nov;137(11):2577–2593. doi: 10.1099/00221287-137-11-2577. [DOI] [PubMed] [Google Scholar]
  16. Gilmore K. S., Russell R. R., Ferretti J. J. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun. 1990 Aug;58(8):2452–2458. doi: 10.1128/iai.58.8.2452-2458.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev. 1980 Jun;44(2):331–384. doi: 10.1128/mr.44.2.331-384.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanada N., Isobe Y., Aizawa Y., Katayama T., Sato S., Inoue M. Nucleotide sequence analysis of the gtfT gene from Streptococcus sobrinus OMZ176. Infect Immun. 1993 May;61(5):2096–2103. doi: 10.1128/iai.61.5.2096-2103.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Honda O., Kato C., Kuramitsu H. K. Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol. 1990 Oct;136(10):2099–2105. doi: 10.1099/00221287-136-10-2099. [DOI] [PubMed] [Google Scholar]
  20. Jones K. F., Fischetti V. A. The importance of the location of antibody binding on the M6 protein for opsonization and phagocytosis of group A M6 streptococci. J Exp Med. 1988 Mar 1;167(3):1114–1123. doi: 10.1084/jem.167.3.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaper J. B., Lockman H., Baldini M. M., Levine M. M. Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Nature. 1984 Apr 12;308(5960):655–658. doi: 10.1038/308655a0. [DOI] [PubMed] [Google Scholar]
  22. Kato C., Kuramitsu H. K. Carboxyl-terminal deletion analysis of the Streptococcus mutans glucosyltransferase-I enzyme. FEMS Microbiol Lett. 1990 Nov;60(3):299–302. doi: 10.1016/0378-1097(90)90321-g. [DOI] [PubMed] [Google Scholar]
  23. Kato C., Nakano Y., Lis M., Kuramitsu H. K. Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1184–1188. doi: 10.1016/0006-291x(92)92329-v. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  25. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B. A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene. 1982 Oct;19(3):345–353. doi: 10.1016/0378-1119(82)90025-7. [DOI] [PubMed] [Google Scholar]
  27. McKenzie S. J., Halsey J. F. Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol. 1984 Oct;133(4):1818–1824. [PubMed] [Google Scholar]
  28. Michalek S. M., Childers N. K. Development and outlook for a caries vaccine. Crit Rev Oral Biol Med. 1990;1(1):37–54. doi: 10.1177/10454411900010010401. [DOI] [PubMed] [Google Scholar]
  29. Michalek S. M., Childers N. K., Katz J., Dertzbaugh M., Zhang S., Russell M. W., Macrina F. L., Jackson S., Mestecky J. Liposomes and conjugate vaccines for antigen delivery and induction of mucosal immune responses. Adv Exp Med Biol. 1992;327:191–198. doi: 10.1007/978-1-4615-3410-5_21. [DOI] [PubMed] [Google Scholar]
  30. Mooser G., Hefta S. A., Paxton R. J., Shively J. E., Lee T. D. Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J Biol Chem. 1991 May 15;266(14):8916–8922. [PubMed] [Google Scholar]
  31. Munro C. L., Michalek S. M., Macrina F. L. Sucrose-derived exopolymers have site-dependent roles in Streptococcus mutans-promoted dental decay. FEMS Microbiol Lett. 1995 May 15;128(3):327–332. doi: 10.1111/j.1574-6968.1995.tb07544.x. [DOI] [PubMed] [Google Scholar]
  32. Munro C., Michalek S. M., Macrina F. L. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun. 1991 Jul;59(7):2316–2323. doi: 10.1128/iai.59.7.2316-2323.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nakano Y. J., Kuramitsu H. K. Mechanism of Streptococcus mutans glucosyltransferases: hybrid-enzyme analysis. J Bacteriol. 1992 Sep;174(17):5639–5646. doi: 10.1128/jb.174.17.5639-5646.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shimamura A., Nakano Y. J., Mukasa H., Kuramitsu H. K. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J Bacteriol. 1994 Aug;176(16):4845–4850. doi: 10.1128/jb.176.16.4845-4850.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shiroza T., Ueda S., Kuramitsu H. K. Sequence analysis of the gtfB gene from Streptococcus mutans. J Bacteriol. 1987 Sep;169(9):4263–4270. doi: 10.1128/jb.169.9.4263-4270.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simpson C. L., Giffard P. M., Jacques N. A. Streptococcus salivarius ATCC 25975 possesses at least two genes coding for primer-independent glucosyltransferases. Infect Immun. 1995 Feb;63(2):609–621. doi: 10.1128/iai.63.2.609-621.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith D. J., Taubman M. A., Holmberg C. F., Eastcott J., King W. F., Ali-Salaam P. Antigenicity and immunogenicity of a synthetic peptide derived from a glucan-binding domain of mutans streptococcal glucosyltransferase. Infect Immun. 1993 Jul;61(7):2899–2905. doi: 10.1128/iai.61.7.2899-2905.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D. J., Taubman M. A., King W. F., Eida S., Powell J. R., Eastcott J. Immunological characteristics of a synthetic peptide associated with a catalytic domain of mutans streptococcal glucosyltransferase. Infect Immun. 1994 Dec;62(12):5470–5476. doi: 10.1128/iai.62.12.5470-5476.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stover C. K., Vodkin M. H., Oaks E. V. Use of conversion adaptors to clone antigen genes in lambda gt11. Anal Biochem. 1987 Jun;163(2):398–407. doi: 10.1016/0003-2697(87)90241-7. [DOI] [PubMed] [Google Scholar]
  40. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  41. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ueda S., Shiroza T., Kuramitsu H. K. Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene. 1988 Sep 15;69(1):101–109. doi: 10.1016/0378-1119(88)90382-4. [DOI] [PubMed] [Google Scholar]
  44. Wong C., Hefta S. A., Paxton R. J., Shively J. E., Mooser G. Size and subdomain architecture of the glucan-binding domain of sucrose:3-alpha-D-glucosyltransferase from Streptococcus sobrinus. Infect Immun. 1990 Jul;58(7):2165–2170. doi: 10.1128/iai.58.7.2165-2170.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 1993 Sep;61(9):3811–3817. doi: 10.1128/iai.61.9.3811-3817.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamashita Y., Bowen W. H., Kuramitsu H. K. Molecular analysis of a Streptococcus mutans strain exhibiting polymorphism in the tandem gtfB and gtfC genes. Infect Immun. 1992 Apr;60(4):1618–1624. doi: 10.1128/iai.60.4.1618-1624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES