Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Mar;70(3):289–297. doi: 10.1136/jnnp.70.3.289

Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease

H Stolze 1, J Kuhtz-Buschbeck 1, H Drucke 1, K Johnk 1, M Illert 1, G Deuschl 1
PMCID: PMC1737236  PMID: 11181848

Abstract

OBJECTIVES—Comparative gait analyses in neurological diseases interfering with locomotion are of particular interest, as many hypokinetic gait disorders have the same main features. The aim of the present study was (1) to compare the gait disturbance in normal pressure hydrocephalus and Parkinson's disease; (2) to evaluate which variables of the disturbed gait pattern respond to specific treatment in both diseases; and (3) to assess the responsiveness to visual and acoustic cues for gait improvement.
METHODS—In study 1 gait analysis was carried out on 11 patients with normal pressure hydrocephalus, 10 patients with Parkinson's disease, and 12 age matched healthy control subjects, on a walkway and on a treadmill. In study 2, patients with normal pressure hydrocephalus were reinvestigated after removal of 30 ml CSF, and patients with Parkinson's disease after administration of 150 mg levodopa. In part 3 visual cues were provided as stripes fixed on the walkway and acoustic cues as beats of a metronome.
RESULTS—The gait disorder in both diseases shared the feature of a reduced gait velocity, due to a diminished and highly variable stride length. Specific features of the gait disturbance in normal pressure hydrocephalus were a broad based gait pattern with outward rotated feet and a diminished height of the steps. After treatment in both diseases, the speed increased, due to an enlarged stride length, now presenting a lower variability. All other gait variables remained unaffected. External cues only mildly improved gait in normal pressure hydrocephalus, whereas they were highly effective in raising the stride length and cadence in Parkinson's disease.
CONCLUSION—The gait pattern in normal pressure hydrocephalus is clearly distinguishable from the gait of Parkinson's disease. As well as the basal ganglia output connections, other pathways and structures most likely in the frontal lobes are responsible for the gait pattern and especially the disturbed dynamic equilibrium in normal pressure hydrocephalus. Hypokinesia and its responsiveness to external cues in both diseases are assumed to be an expression of a disturbed motor planning.



Full Text

The Full Text of this article is available as a PDF (179.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS R. D., FISHER C. M., HAKIM S., OJEMANN R. G., SWEET W. H. SYMPTOMATIC OCCULT HYDROCEPHALUS WITH "NORMAL" CEREBROSPINAL-FLUID PRESSURE.A TREATABLE SYNDROME. N Engl J Med. 1965 Jul 15;273:117–126. doi: 10.1056/NEJM196507152730301. [DOI] [PubMed] [Google Scholar]
  2. Azulay J. P., Van Den Brand C., Mestre D., Blin O., Sangla I., Pouget J., Serratrice G. Analyse cinématique de la marche du parkinsonien: effets de la levodopa et de stimulations visuelles. Rev Neurol (Paris) 1996 Feb;152(2):128–134. [PubMed] [Google Scholar]
  3. Blin O., Ferrandez A. M., Pailhous J., Serratrice G. Dopa-sensitive and dopa-resistant gait parameters in Parkinson's disease. J Neurol Sci. 1991 May;103(1):51–54. doi: 10.1016/0022-510x(91)90283-d. [DOI] [PubMed] [Google Scholar]
  4. Blin O., Ferrandez A. M., Serratrice G. Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J Neurol Sci. 1990 Aug;98(1):91–97. doi: 10.1016/0022-510x(90)90184-o. [DOI] [PubMed] [Google Scholar]
  5. Bowes S. G., Clark P. K., Leeman A. L., O'Neill C. J., Weller C., Nicholson P. W., Deshmukh A. A., Dobbs S. M., Dobbs R. J. Determinants of gait in the elderly parkinsonian on maintenance levodopa/carbidopa therapy. Br J Clin Pharmacol. 1990 Jul;30(1):13–24. doi: 10.1111/j.1365-2125.1990.tb03738.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brooks D. J., Salmon E. P., Mathias C. J., Quinn N., Leenders K. L., Bannister R., Marsden C. D., Frackowiak R. S. The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson's disease, studied with PET. Brain. 1990 Oct;113(Pt 5):1539–1552. doi: 10.1093/brain/113.5.1539. [DOI] [PubMed] [Google Scholar]
  7. Camicioli R., Howieson D., Lehman S., Kaye J. Talking while walking: the effect of a dual task in aging and Alzheimer's disease. Neurology. 1997 Apr;48(4):955–958. doi: 10.1212/wnl.48.4.955. [DOI] [PubMed] [Google Scholar]
  8. Curran T., Lang A. E. Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature, and pathophysiological hypotheses. Mov Disord. 1994 Sep;9(5):508–520. doi: 10.1002/mds.870090503. [DOI] [PubMed] [Google Scholar]
  9. Dietz V., Zijlstra W., Prokop T., Berger W. Leg muscle activation during gait in Parkinson's disease: adaptation and interlimb coordination. Electroencephalogr Clin Neurophysiol. 1995 Dec;97(6):408–415. doi: 10.1016/0924-980x(95)00109-x. [DOI] [PubMed] [Google Scholar]
  10. Ebersbach G., Sojer M., Valldeoriola F., Wissel J., Müller J., Tolosa E., Poewe W. Comparative analysis of gait in Parkinson's disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy. Brain. 1999 Jul;122(Pt 7):1349–1355. doi: 10.1093/brain/122.7.1349. [DOI] [PubMed] [Google Scholar]
  11. Fisher C. M. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982 Dec;32(12):1358–1363. doi: 10.1212/wnl.32.12.1358. [DOI] [PubMed] [Google Scholar]
  12. Graff-Radford N. R., Godersky J. C. Normal-pressure hydrocephalus. Onset of gait abnormality before dementia predicts good surgical outcome. Arch Neurol. 1986 Sep;43(9):940–942. doi: 10.1001/archneur.1986.00520090068020. [DOI] [PubMed] [Google Scholar]
  13. Hakim S., Adams R. D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965 Jul-Aug;2(4):307–327. doi: 10.1016/0022-510x(65)90016-x. [DOI] [PubMed] [Google Scholar]
  14. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):181–184. doi: 10.1136/jnnp.55.3.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jack C. R., Jr, Mokri B., Laws E. R., Jr, Houser O. W., Baker H. L., Jr, Petersen R. C. MR findings in normal-pressure hydrocephalus: significance and comparison with other forms of dementia. J Comput Assist Tomogr. 1987 Nov-Dec;11(6):923–931. doi: 10.1097/00004728-198711000-00001. [DOI] [PubMed] [Google Scholar]
  16. Knutsson E. An analysis of Parkinsonian gait. Brain. 1972;95(3):475–486. doi: 10.1093/brain/95.3.475. [DOI] [PubMed] [Google Scholar]
  17. Knutsson E., Lying-Tunell U. Gait apraxia in normal-pressure hydrocephalus: patterns of movement and muscle activation. Neurology. 1985 Feb;35(2):155–160. doi: 10.1212/wnl.35.2.155. [DOI] [PubMed] [Google Scholar]
  18. Knutsson E., Mårtensson A. Quantitative effects of L-dopa on different types of movements and muscle tone in Parkinsonian patients. Scand J Rehabil Med. 1971;3(3):121–130. [PubMed] [Google Scholar]
  19. Krauss J. K., Droste D. W., Vach W., Regel J. P., Orszagh M., Borremans J. J., Tietz A., Seeger W. Cerebrospinal fluid shunting in idiopathic normal-pressure hydrocephalus of the elderly: effect of periventricular and deep white matter lesions. Neurosurgery. 1996 Aug;39(2):292–300. doi: 10.1097/00006123-199608000-00011. [DOI] [PubMed] [Google Scholar]
  20. MacKay-Lyons M. Variability in spatiotemporal gait characteristics over the course of the L-dopa cycle in people with advanced Parkinson disease . Phys Ther. 1998 Oct;78(10):1083–1094. doi: 10.1093/ptj/78.10.1083. [DOI] [PubMed] [Google Scholar]
  21. Malm J., Kristensen B., Fagerlund M., Koskinen L. O., Ekstedt J. Cerebrospinal fluid shunt dynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry. 1995 Jun;58(6):715–723. doi: 10.1136/jnnp.58.6.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morris M. E., Iansek R., Matyas T. A., Summers J. J. Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms. Brain. 1996 Apr;119(Pt 2):551–568. doi: 10.1093/brain/119.2.551. [DOI] [PubMed] [Google Scholar]
  23. Morris M. E., Iansek R., Matyas T. A., Summers J. J. The pathogenesis of gait hypokinesia in Parkinson's disease. Brain. 1994 Oct;117(Pt 5):1169–1181. doi: 10.1093/brain/117.5.1169. [DOI] [PubMed] [Google Scholar]
  24. Morris M. E., Matyas T. A., Iansek R., Summers J. J. Temporal stability of gait in Parkinson's disease. Phys Ther. 1996 Jul;76(7):763–780. doi: 10.1093/ptj/76.7.763. [DOI] [PubMed] [Google Scholar]
  25. Morris M., Iansek R., Matyas T., Summers J. Abnormalities in the stride length-cadence relation in parkinsonian gait. Mov Disord. 1998 Jan;13(1):61–69. doi: 10.1002/mds.870130115. [DOI] [PubMed] [Google Scholar]
  26. Murray M. P., Sepic S. B., Gardner G. M., Downs W. J. Walking patterns of men with parkinsonism. Am J Phys Med. 1978 Dec;57(6):278–294. [PubMed] [Google Scholar]
  27. Nutt J. G., Marsden C. D., Thompson P. D. Human walking and higher-level gait disorders, particularly in the elderly. Neurology. 1993 Feb;43(2):268–279. doi: 10.1212/wnl.43.2.268. [DOI] [PubMed] [Google Scholar]
  28. Soelberg Sørensen P., Jansen E. C., Gjerris F. Motor disturbances in normal-pressure hydrocephalus. Special reference to stance and gait. Arch Neurol. 1986 Jan;43(1):34–38. doi: 10.1001/archneur.1986.00520010030016. [DOI] [PubMed] [Google Scholar]
  29. Stern G. M., Franklyn S. E., Imms F. J., Prestidge S. P. Quantitative assessments of gait and mobility in Parkinson's disease. J Neural Transm Suppl. 1983;19:201–214. [PubMed] [Google Scholar]
  30. Stolze H., Kuhtz-Buschbeck J. P., Mondwurf C., Boczek-Funcke A., Jöhnk K., Deuschl G., Illert M. Gait analysis during treadmill and overground locomotion in children and adults. Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):490–497. doi: 10.1016/s0924-980x(97)00055-6. [DOI] [PubMed] [Google Scholar]
  31. Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, Jöhnk K, Friege L. Retest reliability of spatiotemporal gait parameters in children and adults. Gait Posture. 1998 Mar 1;7(2):125–130. doi: 10.1016/s0966-6362(97)00043-x. [DOI] [PubMed] [Google Scholar]
  32. Sudarsky L., Simon S. Gait disorder in late-life hydrocephalus. Arch Neurol. 1987 Mar;44(3):263–267. doi: 10.1001/archneur.1987.00520150019012. [DOI] [PubMed] [Google Scholar]
  33. Tanaka A., Okuzumi H., Kobayashi I., Murai N., Meguro K., Nakamura T. Gait disturbance of patients with vascular and Alzheimer-type dementias. Percept Mot Skills. 1995 Jun;80(3 Pt 1):735–738. doi: 10.2466/pms.1995.80.3.735. [DOI] [PubMed] [Google Scholar]
  34. Thompson P. D., Marsden C. D. Gait disorder of subcortical arteriosclerotic encephalopathy: Binswanger's disease. Mov Disord. 1987;2(1):1–8. doi: 10.1002/mds.870020101. [DOI] [PubMed] [Google Scholar]
  35. Ueno E., Yanagisawa N., Takami M. Gait disorders in parkinsonism. A study with floor reaction forces and EMG. Adv Neurol. 1993;60:414–418. [PubMed] [Google Scholar]
  36. Vanneste J., Augustijn P., Tan W. F., Dirven C. Shunting normal pressure hydrocephalus: the predictive value of combined clinical and CT data. J Neurol Neurosurg Psychiatry. 1993 Mar;56(3):251–256. doi: 10.1136/jnnp.56.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vieregge P., Stolze H., Klein C., Heberlein I. Gait quantitation in Parkinson's disease--locomotor disability and correlation to clinical rating scales. J Neural Transm (Vienna) 1997;104(2-3):237–248. doi: 10.1007/BF01273184. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES