Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Mar;70(3):350–358. doi: 10.1136/jnnp.70.3.350

Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome

M Grados 1, B Slomine 1, J Gerring 1, R Vasa 1, N Bryan 1, M Denckla 1
PMCID: PMC1737245  PMID: 11181858

Abstract

OBJECTIVES—The utility of a depth of lesion classification using an SPGR MRI sequence in children with moderate to severe traumatic brain injury (TBI) was examined. Clinical and depth of lesion classification measures of TBI severity were used to predict neurological and functional outcome after TBI.
METHODS—One hundred and six children, aged 4 to 19, with moderate to severe TBI admitted to a rehabilitation unit had an SPGR MRI sequence obtained 3 months afterTBI. Acquired images were analyzed for location, number, and size of lesions. The Glasgow coma scale (GCS) was the clinical indicator of severity. The deepest lesion present was used for depth of lesion classification. Speed of injury was inferred from the type of injury. The disability rating scale at the time of discharge from the rehabilitation unit (DRS1) and at 1 year follow up (DRS2) were functional outcome measures.
RESULTS—The depth of lesion classification was significantly correlated with GCS severity, number of lesions, and both functional measures, DRS1 and DRS2. This result was more robust for time 1, probably due to the greater number of psychosocial factors impacting on functioning at time 2. Lesion volume was not correlated with the depth of lesion model. In multivariate models, depth of lesion was most predictive of DRS1, whereas GCS was most predictive of DRS2.
CONCLUSIONS—A depth of lesion classification of TBI severity may have clinical utility in predicting functional outcome in children and adolescents with moderate to severe TBI.



Full Text

The Full Text of this article is available as a PDF (192.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams H., Mitchell D. E., Graham D. I., Doyle D. Diffuse brain damage of immediate impact type. Its relationship to 'primary brain-stem damage' in head injury. Brain. 1977 Sep;100(3):489–502. doi: 10.1093/brain/100.3.489. [DOI] [PubMed] [Google Scholar]
  2. Alexander G. E., DeLong M. R., Strick P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041. [DOI] [PubMed] [Google Scholar]
  3. Alsop D. C., Murai H., Detre J. A., McIntosh T. K., Smith D. H. Detection of acute pathologic changes following experimental traumatic brain injury using diffusion-weighted magnetic resonance imaging. J Neurotrauma. 1996 Sep;13(9):515–521. doi: 10.1089/neu.1996.13.515. [DOI] [PubMed] [Google Scholar]
  4. Andreasen N. C., Rajarethinam R., Cizadlo T., Arndt S., Swayze V. W., 2nd, Flashman L. A., O'Leary D. S., Ehrhardt J. C., Yuh W. T. Automatic atlas-based volume estimation of human brain regions from MR images. J Comput Assist Tomogr. 1996 Jan-Feb;20(1):98–106. doi: 10.1097/00004728-199601000-00018. [DOI] [PubMed] [Google Scholar]
  5. Aylward E. H., Augustine A., Li Q., Barta P. E., Pearlson G. D. Measurement of frontal lobe volume on magnetic resonance imaging scans. Psychiatry Res. 1997 Aug 8;75(1):23–30. doi: 10.1016/s0925-4927(97)00026-7. [DOI] [PubMed] [Google Scholar]
  6. Bhatoe H. S. Primary brainstem injury: benign course and improved survival. Acta Neurochir (Wien) 1999;141(5):515–519. doi: 10.1007/s007010050333. [DOI] [PubMed] [Google Scholar]
  7. Cecil K. M., Hills E. C., Sandel M. E., Smith D. H., McIntosh T. K., Mannon L. J., Sinson G. P., Bagley L. J., Grossman R. I., Lenkinski R. E. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998 May;88(5):795–801. doi: 10.3171/jns.1998.88.5.0795. [DOI] [PubMed] [Google Scholar]
  8. Colletti P. M. Computer-assisted imaging of the fetus with magnetic resonance imaging. Comput Med Imaging Graph. 1996 Nov-Dec;20(6):491–496. doi: 10.1016/s0895-6111(96)00045-6. [DOI] [PubMed] [Google Scholar]
  9. Ewing-Cobbs L., Levin H. S., Fletcher J. M., Miner M. E., Eisenberg H. M. The Children's Orientation and Amnesia Test: relationship to severity of acute head injury and to recovery of memory. Neurosurgery. 1990 Nov;27(5):683–691. [PubMed] [Google Scholar]
  10. Friston K. J. Theoretical neurobiology and schizophrenia. Br Med Bull. 1996 Jul;52(3):644–655. doi: 10.1093/oxfordjournals.bmb.a011573. [DOI] [PubMed] [Google Scholar]
  11. Guyer B., Ellers B. Childhood injuries in the United States. Mortality, Morbidity, and cost. Am J Dis Child. 1990 Jun;144(6):649–652. doi: 10.1001/archpedi.1990.02150300047016. [DOI] [PubMed] [Google Scholar]
  12. Horwitz B., Rumsey J. M., Donohue B. C. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939–8944. doi: 10.1073/pnas.95.15.8939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jenkins A., Teasdale G., Hadley M. D., Macpherson P., Rowan J. O. Brain lesions detected by magnetic resonance imaging in mild and severe head injuries. Lancet. 1986 Aug 23;2(8504):445–446. doi: 10.1016/s0140-6736(86)92145-8. [DOI] [PubMed] [Google Scholar]
  14. Kampfl A., Franz G., Aichner F., Pfausler B., Haring H. P., Felber S., Luz G., Schocke M., Schmutzhard E. The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg. 1998 May;88(5):809–816. doi: 10.3171/jns.1998.88.5.0809. [DOI] [PubMed] [Google Scholar]
  15. Katz D. I., Alexander M. P. Traumatic brain injury. Predicting course of recovery and outcome for patients admitted to rehabilitation. Arch Neurol. 1994 Jul;51(7):661–670. doi: 10.1001/archneur.1994.00540190041013. [DOI] [PubMed] [Google Scholar]
  16. Kim R. C., Fagin K., Choi B. H. Prolonged survival after severe traumatic injury limited to the brainstem. Surg Neurol. 1985 May;23(5):525–528. doi: 10.1016/0090-3019(85)90250-2. [DOI] [PubMed] [Google Scholar]
  17. Krieger D., Adams H. P., Schwarz S., Rieke K., Aschoff A., Hacke W. Prognostic and clinical relevance of pupillary responses, intracranial pressure monitoring, and brainstem auditory evoked potentials in comatose patients with acute supratentorial mass lesions. Crit Care Med. 1993 Dec;21(12):1944–1950. doi: 10.1097/00003246-199312000-00024. [DOI] [PubMed] [Google Scholar]
  18. Levin H. S., Mendelsohn D., Lilly M. A., Yeakley J., Song J., Scheibel R. S., Harward H., Fletcher J. M., Kufera J. A., Davidson K. C. Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya-Gennarelli model. Neurosurgery. 1997 Mar;40(3):432–441. doi: 10.1097/00006123-199703000-00002. [DOI] [PubMed] [Google Scholar]
  19. Levin H. S., Williams D., Crofford M. J., High W. M., Jr, Eisenberg H. M., Amparo E. G., Guinto F. C., Jr, Kalisky Z., Handel S. F., Goldman A. M. Relationship of depth of brain lesions to consciousness and outcome after closed head injury. J Neurosurg. 1988 Dec;69(6):861–866. doi: 10.3171/jns.1988.69.6.0861. [DOI] [PubMed] [Google Scholar]
  20. Lieh-Lai M. W., Theodorou A. A., Sarnaik A. P., Meert K. L., Moylan P. M., Canady A. I. Limitations of the Glasgow Coma Scale in predicting outcome in children with traumatic brain injury. J Pediatr. 1992 Feb;120(2 Pt 1):195–199. doi: 10.1016/s0022-3476(05)80426-3. [DOI] [PubMed] [Google Scholar]
  21. Ommaya A. K., Gennarelli T. A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain. 1974 Dec;97(4):633–654. doi: 10.1093/brain/97.1.633. [DOI] [PubMed] [Google Scholar]
  22. Paradiso S., Andreasen N. C., O'Leary D. S., Arndt S., Robinson R. G. Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsychiatry Neuropsychol Behav Neurol. 1997 Jan;10(1):1–8. [PubMed] [Google Scholar]
  23. Parizel P. M., Ozsarlak, Van Goethem J. W., van den Hauwe L., Dillen C., Verlooy J., Cosyns P., De Schepper A. M. Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol. 1998;8(6):960–965. doi: 10.1007/s003300050496. [DOI] [PubMed] [Google Scholar]
  24. Paulesu E., Frith U., Snowling M., Gallagher A., Morton J., Frackowiak R. S., Frith C. D. Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain. 1996 Feb;119(Pt 1):143–157. doi: 10.1093/brain/119.1.143. [DOI] [PubMed] [Google Scholar]
  25. Povlishock J. T., Christman C. W. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma. 1995 Aug;12(4):555–564. doi: 10.1089/neu.1995.12.555. [DOI] [PubMed] [Google Scholar]
  26. Quigley M. R., Vidovich D., Cantella D., Wilberger J. E., Maroon J. C., Diamond D. Defining the limits of survivorship after very severe head injury. J Trauma. 1997 Jan;42(1):7–10. doi: 10.1097/00005373-199701000-00003. [DOI] [PubMed] [Google Scholar]
  27. Rand S., Maravilla K. R. Uses and limitations of spoiled gradient-refocused imaging in the evaluation of suspected intracranial tumors. Top Magn Reson Imaging. 1992 Sep;4(4):7–16. [PubMed] [Google Scholar]
  28. Rappaport M., Hall K. M., Hopkins K., Belleza T., Cope D. N. Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil. 1982 Mar;63(3):118–123. [PubMed] [Google Scholar]
  29. Shogry M. E., Elster A. D. Cerebrovascular enhancement in spoiled GRASS (SPGR) images: comparison with spin-echo technique. J Comput Assist Tomogr. 1992 Jan-Feb;16(1):48–53. doi: 10.1097/00004728-199201000-00009. [DOI] [PubMed] [Google Scholar]
  30. Slifer K. J., Cataldo M. F., Cataldo M. D., Llorente A. M., Gerson A. C. Behavior analysis of motion control for pediatric neuroimaging. J Appl Behav Anal. 1993 Winter;26(4):469–470. doi: 10.1901/jaba.1993.26-469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974 Jul 13;2(7872):81–84. doi: 10.1016/s0140-6736(74)91639-0. [DOI] [PubMed] [Google Scholar]
  32. Teasdale G., Teasdale E., Hadley D. Computed tomographic and magnetic resonance imaging classification of head injury. J Neurotrauma. 1992 Mar;9 (Suppl 1):S249–S257. [PubMed] [Google Scholar]
  33. Terry R. D. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol. 1996 Oct;55(10):1023–1025. [PubMed] [Google Scholar]
  34. Torres I. J., Flashman L. A., O'Leary D. S., Swayze V., 2nd, Andreasen N. C. Lack of an association between delayed memory and hippocampal and temporal lobe size in patients with schizophrenia and healthy controls. Biol Psychiatry. 1997 Dec 15;42(12):1087–1096. doi: 10.1016/s0006-3223(97)00024-3. [DOI] [PubMed] [Google Scholar]
  35. Wilson J. T., Wiedmann K. D., Hadley D. M., Condon B., Teasdale G., Brooks D. N. Early and late magnetic resonance imaging and neuropsychological outcome after head injury. J Neurol Neurosurg Psychiatry. 1988 Mar;51(3):391–396. doi: 10.1136/jnnp.51.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zimmerman R. A., Bilaniuk L. T., Genneralli T. Computed tomography of shearing injuries of the cerebral white matter. Radiology. 1978 May;127(2):393–396. doi: 10.1148/127.2.393. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES