Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Mar;70(3):298–304. doi: 10.1136/jnnp.70.3.298

Shunt related changes in somatostatin, neuropeptide Y, and corticotropin releasing factor concentrations in patients with normal pressure hydrocephalus

M Poca 1, M Mataro 1, J Sahuquillo 1, R Catalan 1, J Ibanez 1, R Galard 1
PMCID: PMC1737268  PMID: 11181849

Abstract

OBJECTIVES—Recent data indicate that alterations in brain neuropeptides may play a pathogenic role in dementia. Neuropeptide Y (NPY), somastostatin (SOM), and corticotropin releasing factor (CRF) are neuropeptides involved in cognitive performance. Decreased SOM and NPY concentrations have been found in patients with normal pressure hydrocephalus and are probably the result of neuronal dysfunction, which could potentially be restored by shunting. The effects of shunt surgery on preoperative SOM, NPY, and CRF concentrations were studied. Any improvements in neuropeptide concentrations that could lead to clinically significant neuropsychological and functional changes were also investigated.
METHODS—A prospective study was performed in 14 patients with normal pressure hydrocephalus syndrome with a duration of symptoms between 3 months and 12 years. Diagnosis was based on intracranial pressure (ICP) monitoring and CSF dynamics. Concentrations of SOM, NPY, and CRF in lumbar CSF were determined before shunting and again 6-9 months after surgery. A battery of neuropsychological tests and several rating functional scales were also given to patients before and after shunting.
RESULTS—After shunting, SOM and CRF concentrations were significantly increased in all patients. Concentrations of NPY were increased in 12 of the 14 patients studied. The clinical condition of 13of the 14 patients was significantly improved 6 months after surgery. This improvement was more pronounced in gait disturbances and sphincter dysfunction than in cognitive impairment. No significant differences in any of the neuropsychological tests were seen for the group of patients as a whole despite the increased neuropeptide concentrations.
CONCLUSIONS—Shunting can restore SOM, NPY, and CRF concentrations even in patients with longstanding normal pressure hydrocephalus. However, despite the biochemical and clinical improvement in some areas such as ambulation and daily life activities, cognitive performance did not significantly improve. The role of neuropeptides in the diagnosis and treatment of patients with normal pressure hydrocephalus syndrome is discussed.



Full Text

The Full Text of this article is available as a PDF (161.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alom J., Galard R., Catalan R., Castellanos J. M., Schwartz S., Tolosa E. Cerebrospinal fluid neuropeptide Y in Alzheimer's disease. Eur Neurol. 1990;30(4):207–210. doi: 10.1159/000117347. [DOI] [PubMed] [Google Scholar]
  2. Banki C. M., Karmacsi L., Bissette G., Nemeroff C. B. Cerebrospinal fluid neuropeptides in dementia. Biol Psychiatry. 1992 Sep 1;32(5):452–456. doi: 10.1016/0006-3223(92)90132-j. [DOI] [PubMed] [Google Scholar]
  3. Banki C. M., Karmacsi L., Bissette G., Nemeroff C. B. Cerebrospinal-fluid neuropeptides: a biochemical subgrouping approach. Neuropsychobiology. 1992;26(1-2):37–42. doi: 10.1159/000118894. [DOI] [PubMed] [Google Scholar]
  4. Bennett G. W., Ballard T. M., Watson C. D., Fone K. C. Effect of neuropeptides on cognitive function. Exp Gerontol. 1997 Jul-Oct;32(4-5):451–469. doi: 10.1016/s0531-5565(96)00159-3. [DOI] [PubMed] [Google Scholar]
  5. Bierer L. M., Haroutunian V., Gabriel S., Knott P. J., Carlin L. S., Purohit D. P., Perl D. P., Schmeidler J., Kanof P., Davis K. L. Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J Neurochem. 1995 Feb;64(2):749–760. doi: 10.1046/j.1471-4159.1995.64020749.x. [DOI] [PubMed] [Google Scholar]
  6. Catalan R., Sahuquillo J., Poca M. A., Molins A., Castellanos J. M., Galard R. Neuropeptide Y cerebrospinal fluid levels in patients with normal pressure hydrocephalus syndrome. Biol Psychiatry. 1994 Jul 1;36(1):61–63. doi: 10.1016/0006-3223(94)90064-7. [DOI] [PubMed] [Google Scholar]
  7. Catalán R., Gallart J. M., Castellanos J. M., Galard R. Plasma corticotropin-releasing factor in depressive disorders. Biol Psychiatry. 1998 Jul 1;44(1):15–20. doi: 10.1016/s0006-3223(97)00539-8. [DOI] [PubMed] [Google Scholar]
  8. Cramer H., Kohler J., Oepen G., Schomburg G., Schröter E. Huntington's chorea-- measurements of somatostatin, substance P and cyclic nucleotides in the cerebrospinal fluid. J Neurol. 1981;225(3):183–187. doi: 10.1007/BF00313747. [DOI] [PubMed] [Google Scholar]
  9. Del Bigio M. R. Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery. 1989 Sep;25(3):416–423. doi: 10.1097/00006123-198909000-00016. [DOI] [PubMed] [Google Scholar]
  10. Galard R., Poca M. A., Catalán R., Tintoré M., Castellanos J. M., Sahuquillo J. Decreased cholecystokinin levels in cerebrospinal fluid of patients with adult chronic hydrocephalus syndrome. Biol Psychiatry. 1997 Apr 1;41(7):804–809. doi: 10.1016/S0006-3223(96)00098-4. [DOI] [PubMed] [Google Scholar]
  11. Geracioti T. D., Jr, Orth D. N., Ekhator N. N., Blumenkopf B., Loosen P. T. Serial cerebrospinal fluid corticotropin-releasing hormone concentrations in healthy and depressed humans. J Clin Endocrinol Metab. 1992 Jun;74(6):1325–1330. doi: 10.1210/jcem.74.6.1317385. [DOI] [PubMed] [Google Scholar]
  12. Gjerris A., Gjerris F., Sørensen P. S., Sørensen E. B., Christensen N. J., Fahrenkrug J., Rehfeld J. F. Do concentrations of neurotransmitters measured in lumbar cerebrospinal fluid reflect the concentrations at brain level? Acta Neurochir (Wien) 1988;91(1-2):55–59. doi: 10.1007/BF01400529. [DOI] [PubMed] [Google Scholar]
  13. Golomb J., de Leon M. J., George A. E., Kluger A., Convit A., Rusinek H., de Santi S., Litt A., Foo S. H., Ferris S. H. Hippocampal atrophy correlates with severe cognitive impairment in elderly patients with suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1994 May;57(5):590–593. doi: 10.1136/jnnp.57.5.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heilig M., Sjögren M., Blennow K., Ekman R., Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer's disease and vascular dementia. Biol Psychiatry. 1995 Aug 15;38(4):210–216. doi: 10.1016/0006-3223(94)00239-Y. [DOI] [PubMed] [Google Scholar]
  15. Katzman R., Hussey F. A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology. 1970 Jun;20(6):534–544. doi: 10.1212/wnl.20.6.534. [DOI] [PubMed] [Google Scholar]
  16. Kohler J., Schröter E., Cramer H. Somatostatin-like immunoreactivity in the cerebrospinal fluid of neurological patients. Arch Psychiatr Nervenkr (1970) 1982;231(6):503–508. doi: 10.1007/BF00343993. [DOI] [PubMed] [Google Scholar]
  17. Marmarou A., Shulman K., LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975 Nov;43(5):523–534. doi: 10.3171/jns.1975.43.5.0523. [DOI] [PubMed] [Google Scholar]
  18. Marmarou A., Shulman K., Rosende R. M. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg. 1978 Mar;48(3):332–344. doi: 10.3171/jns.1978.48.3.0332. [DOI] [PubMed] [Google Scholar]
  19. Miyazawa T., Sato K. Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus. Childs Nerv Syst. 1991 Jun;7(3):121–128. doi: 10.1007/BF00776706. [DOI] [PubMed] [Google Scholar]
  20. Moir A. T., Ashcroft G. W., Crawford T. B., Eccleston D., Guldberg H. C. Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain. 1970;93(2):357–368. doi: 10.1093/brain/93.2.357. [DOI] [PubMed] [Google Scholar]
  21. Molins A., Catalán R., Sahuquillo J., Castellanos J. M., Codina A., Galard R. Somatostatin cerebrospinal fluid levels in dementia. J Neurol. 1991 Jun;238(3):168–170. doi: 10.1007/BF00319684. [DOI] [PubMed] [Google Scholar]
  22. Sahuquillo J., Rubio E., Codina A., Molins A., Guitart J. M., Poca M. A., Chasampi A. Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called "normal pressure hydrocephalus" syndrome. Acta Neurochir (Wien) 1991;112(1-2):50–61. doi: 10.1007/BF01402454. [DOI] [PubMed] [Google Scholar]
  23. Schwarzberg H., Pross M. Neuropeptides in the cerebrospinal fluid and regulation of behavior. Prog Brain Res. 1992;91:455–457. doi: 10.1016/s0079-6123(08)62367-5. [DOI] [PubMed] [Google Scholar]
  24. Tashiro Y., Drake J. M. Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg. 1998 Apr;88(4):709–717. doi: 10.3171/jns.1998.88.4.0709. [DOI] [PubMed] [Google Scholar]
  25. Thomsen A. M., Børgesen S. E., Bruhn P., Gjerris F. Prognosis of dementia in normal-pressure hydrocephalus after a shunt operation. Ann Neurol. 1986 Sep;20(3):304–310. doi: 10.1002/ana.410200306. [DOI] [PubMed] [Google Scholar]
  26. Valenti G. Neuropeptide changes in dementia: pathogenetic implications and diagnostic value. Gerontology. 1996;42(5):241–256. doi: 10.1159/000213799. [DOI] [PubMed] [Google Scholar]
  27. Wikkelsö C., Ekman R., Westergren I., Johansson B. Neuropeptides in cerebrospinal fluid in normal-pressure hydrocephalus and dementia. Eur Neurol. 1991;31(2):88–93. doi: 10.1159/000116653. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES