Abstract
OBJECTIVES—Leber's hereditary optic neuropathy (LHON) is a maternally inherited disease characterised by acute or subacute bilateral visual loss in young patients. The primary aetiological event is a mutation in the mitochondrial genome (mtDNA) affecting in most cases mtDNA-encoded subunits of the respiratory chain NADH: coenzyme Q oxidoreductase (complex I). The impaired function of complex I leads to a decline in mitochondrial energy production and enhances free radical generation. METHODS—The concentrations of some non-enzymatic antioxidants (α-tocopherol, β-carotene, lycopene, glutathione, free sulphydryl groups) and the lipid peroxides in the blood of patients with LHON, carriers with homoplasmic DNA mutation at 11 778, and controls were investigated using high performance liquid chromatography and spectrophotometric methods to assess the function of their antioxidant defence systems. RESULTS—The α-tocopherol/cholesterol+ triglyceride ratio was significantly reduced (p<0.05) both in the patients and asymptomatic carriers. The concentrations of the other antioxidants and the lipid peroxides were not different from those of control subjects. CONCLUSION—The low concentration of plasma α-tocopherol most probably reflects the consumption of the antioxidant by the affected tissues. Furthermore, it suggests that α-tocopherol may be the primary scavenger molecule against the free radicals induced by complex I deficiency.
Full Text
The Full Text of this article is available as a PDF (140.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdalla E. K., Caty M. G., Guice K. S., Hinshaw D. B., Oldham K. T. Arterial levels of oxidized glutathione (GSSG) reflect oxidant stress in vivo. J Surg Res. 1990 Apr;48(4):291–296. doi: 10.1016/0022-4804(90)90061-6. [DOI] [PubMed] [Google Scholar]
- Adams J. D., Jr, Lauterburg B. H., Mitchell J. R. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther. 1983 Dec;227(3):749–754. [PubMed] [Google Scholar]
- Augustin W., Wiswedel I., Noack H., Reinheckel T., Reichelt O. Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria. Mol Cell Biochem. 1997 Sep;174(1-2):199–205. [PubMed] [Google Scholar]
- Barbiroli B., Montagna P., Cortelli P., Iotti S., Lodi R., Barboni P., Monari L., Lugaresi E., Frassineti C., Zaniol P. Defective brain and muscle energy metabolism shown by in vivo 31P magnetic resonance spectroscopy in nonaffected carriers of 11778 mtDNA mutation. Neurology. 1995 Jul;45(7):1364–1369. doi: 10.1212/wnl.45.7.1364. [DOI] [PubMed] [Google Scholar]
- Barrientos A., Moraes C. T. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999 Jun 4;274(23):16188–16197. doi: 10.1074/jbc.274.23.16188. [DOI] [PubMed] [Google Scholar]
- Bjørneboe A., Nenseter M. S., Hagen B. F., Bjørneboe G. E., Prydz K., Drevon C. A. Effect of dietary deficiency and supplementation with all-rac-alpha-tocopherol on hepatic content in rats. J Nutr. 1991 Aug;121(8):1208–1213. doi: 10.1093/jn/121.8.1208. [DOI] [PubMed] [Google Scholar]
- Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carelli V., Ghelli A., Bucchi L., Montagna P., De Negri A., Leuzzi V., Carducci C., Lenaz G., Lugaresi E., Degli Esposti M. Biochemical features of mtDNA 14484 (ND6/M64V) point mutation associated with Leber's hereditary optic neuropathy. Ann Neurol. 1999 Mar;45(3):320–328. [PubMed] [Google Scholar]
- Chalmers R. M., Schapira A. H. Clinical, biochemical and molecular genetic features of Leber's hereditary optic neuropathy. Biochim Biophys Acta. 1999 Feb 9;1410(2):147–158. doi: 10.1016/s0005-2728(98)00163-7. [DOI] [PubMed] [Google Scholar]
- Chow C. K., Ibrahim W., Wei Z., Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic Biol Med. 1999 Sep;27(5-6):580–587. doi: 10.1016/s0891-5849(99)00121-5. [DOI] [PubMed] [Google Scholar]
- Cock H. R., Tabrizi S. J., Cooper J. M., Schapira A. H. The influence of nuclear background on the biochemical expression of 3460 Leber's hereditary optic neuropathy. Ann Neurol. 1998 Aug;44(2):187–193. doi: 10.1002/ana.410440208. [DOI] [PubMed] [Google Scholar]
- Cortelli P., Montagna P., Avoni P., Sangiorgi S., Bresolin N., Moggio M., Zaniol P., Mantovani V., Barboni P., Barbiroli B. Leber's hereditary optic neuropathy: genetic, biochemical, and phosphorus magnetic resonance spectroscopy study in an Italian family. Neurology. 1991 Aug;41(8):1211–1215. doi: 10.1212/wnl.41.8.1211. [DOI] [PubMed] [Google Scholar]
- Crane F. L., Navas P. The diversity of coenzyme Q function. Mol Aspects Med. 1997;18 (Suppl):S1–S6. doi: 10.1016/s0098-2997(97)00016-2. [DOI] [PubMed] [Google Scholar]
- Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995 May 24;1271(1):195–204. doi: 10.1016/0925-4439(95)00028-3. [DOI] [PubMed] [Google Scholar]
- Hess D., Keller H. E., Oberlin B., Bonfanti R., Schüep W. Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase. Int J Vitam Nutr Res. 1991;61(3):232–238. [PubMed] [Google Scholar]
- Hofhaus G., Johns D. R., Hurko O., Attardi G., Chomyn A. Respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber's hereditary optic neuropathy. J Biol Chem. 1996 May 31;271(22):13155–13161. doi: 10.1074/jbc.271.22.13155. [DOI] [PubMed] [Google Scholar]
- Horváth R., Abicht A., Shoubridge E. A., Karcagi V., Rózsa C., Komoly S., Lochmüller H. Leber's hereditary optic neuropathy presenting as multiple sclerosis-like disease of the CNS. J Neurol. 2000 Jan;247(1):65–67. doi: 10.1007/s004150050015. [DOI] [PubMed] [Google Scholar]
- Ide T., Tsutsui H., Kinugawa S., Utsumi H., Kang D., Hattori N., Uchida K., Arimura K. i., Egashira K., Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999 Aug 20;85(4):357–363. doi: 10.1161/01.res.85.4.357. [DOI] [PubMed] [Google Scholar]
- Karg E., Klivényi P., Németh I., Bencsik K., Pintér S., Vécsei L. Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol. 1999 Jul;246(7):533–539. doi: 10.1007/s004150050399. [DOI] [PubMed] [Google Scholar]
- Klevenyi P., Andreassen O., Ferrante R. J., Schleicher J. R., Jr, Friedlander R. M., Beal M. F. Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport. 1999 Feb 25;10(3):635–638. doi: 10.1097/00001756-199902250-00035. [DOI] [PubMed] [Google Scholar]
- Klivenyi P., Matthews R. T., Wermer M., Yang L., MacGarvey U., Becker D. A., Natero R., Beal M. F. Azulenyl nitrone spin traps protect against MPTP neurotoxicity. Exp Neurol. 1998 Jul;152(1):163–166. doi: 10.1006/exnr.1998.6824. [DOI] [PubMed] [Google Scholar]
- Koster J. F., Biemond P., Swaak A. J. Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann Rheum Dis. 1986 Jan;45(1):44–46. doi: 10.1136/ard.45.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Larsson N. G., Andersen O., Holme E., Oldfors A., Wahlström J. Leber's hereditary optic neuropathy and complex I deficiency in muscle. Ann Neurol. 1991 Nov;30(5):701–708. doi: 10.1002/ana.410300511. [DOI] [PubMed] [Google Scholar]
- Lass A., Forster M. J., Sohal R. S. Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med. 1999 Jun;26(11-12):1375–1382. doi: 10.1016/s0891-5849(98)00330-x. [DOI] [PubMed] [Google Scholar]
- Lass A., Sohal R. S. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys. 1998 Apr 15;352(2):229–236. doi: 10.1006/abbi.1997.0606. [DOI] [PubMed] [Google Scholar]
- Majander A., Finel M., Savontaus M. L., Nikoskelainen E., Wikström M. Catalytic activity of complex I in cell lines that possess replacement mutations in the ND genes in Leber's hereditary optic neuropathy. Eur J Biochem. 1996 Jul 1;239(1):201–207. doi: 10.1111/j.1432-1033.1996.0201u.x. [DOI] [PubMed] [Google Scholar]
- Majander A., Huoponen K., Savontaus M. L., Nikoskelainen E., Wikström M. Electron transfer properties of NADH:ubiquinone reductase in the ND1/3460 and the ND4/11778 mutations of the Leber hereditary optic neuroretinopathy (LHON). FEBS Lett. 1991 Nov 4;292(1-2):289–292. doi: 10.1016/0014-5793(91)80886-8. [DOI] [PubMed] [Google Scholar]
- Navarro F., Navas P., Burgess J. R., Bello R. I., De Cabo R., Arroyo A., Villalba J. M. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. FASEB J. 1998 Dec;12(15):1665–1673. doi: 10.1096/fasebj.12.15.1665. [DOI] [PubMed] [Google Scholar]
- Nohl H., Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem. 1978 Jan 16;82(2):563–567. doi: 10.1111/j.1432-1033.1978.tb12051.x. [DOI] [PubMed] [Google Scholar]
- Németh I., Boda D. Blood glutathione redox ratio as a parameter of oxidative stress in premature infants with IRDS. Free Radic Biol Med. 1994 Mar;16(3):347–353. doi: 10.1016/0891-5849(94)90036-1. [DOI] [PubMed] [Google Scholar]
- Shoulson I. DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl And Tocopherol Antioxidative Therapy Of Parkinsonism. Ann Neurol. 1998 Sep;44(3 Suppl 1):S160–S166. [PubMed] [Google Scholar]
- Smith P. R., Cooper J. M., Govan G. G., Harding A. E., Schapira A. H. Platelet mitochondrial function in Leber's hereditary optic neuropathy. J Neurol Sci. 1994 Mar;122(1):80–83. doi: 10.1016/0022-510x(94)90055-8. [DOI] [PubMed] [Google Scholar]
- Thomas P. K., Cooper J. M., King R. H., Workman J. M., Schapira A. H., Goss-Sampson M. A., Muller D. P. Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondrial function. J Anat. 1993 Dec;183(Pt 3):451–461. [PMC free article] [PubMed] [Google Scholar]
- Thurnham D. I., Davies J. A., Crump B. J., Situnayake R. D., Davis M. The use of different lipids to express serum tocopherol: lipid ratios for the measurement of vitamin E status. Ann Clin Biochem. 1986 Sep;23(Pt 5):514–520. doi: 10.1177/000456328602300505. [DOI] [PubMed] [Google Scholar]
- Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong A., Cortopassi G. mtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochem Biophys Res Commun. 1997 Oct 9;239(1):139–145. doi: 10.1006/bbrc.1997.7443. [DOI] [PubMed] [Google Scholar]
- Wong S. H., Knight J. A., Hopfer S. M., Zaharia O., Leach C. N., Jr, Sunderman F. W., Jr Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem. 1987 Feb;33(2 Pt 1):214–220. [PubMed] [Google Scholar]
- de Rijk M. C., Breteler M. M., den Breeijen J. H., Launer L. J., Grobbee D. E., van der Meché F. G., Hofman A. Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch Neurol. 1997 Jun;54(6):762–765. doi: 10.1001/archneur.1997.00550180070015. [DOI] [PubMed] [Google Scholar]
