Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Apr;70(4):459–463. doi: 10.1136/jnnp.70.4.459

Transient lesion in the splenium of the corpus callosum: three further cases in epileptic patients and a pathophysiological hypothesis

T Polster 1, M Hoppe 1, A Ebner 1
PMCID: PMC1737304  PMID: 11254767

Abstract

OBJECTIVE—Focal lesions limited to the splenium of the corpus callosum (SCC) are rare and little is known about their aetiology. Three patients were examined for presurgical evaluation in epilepsy with a transient lesion in the SCC and a pathophysiological hypothesis is presented.
METHODS—Three patients were identified with a circumscribed lesion in the centre of the corpus callosum. Follow up MRI was performed, the medical records examined retrospectively, and the literature reviewed.
RESULTS—The patients showed identical lesions in the SCC with reduced T1 and increased T2 signal intensity and an unaffected marginal hemline of a few mm. Patients were asymptomatic and control MRIs showed complete normalisation within 2 months. Patients had been treated with antiepileptic drugs (AEDs) without signs of toxicity. In all patients AEDs were rapidly reduced for diagnostic purposes, but only one had psychomotor seizures, 5 days before imaging.
CONCLUSIONS—A transient lesion in the SCC has so far only been described in 13 patients with epilepsy and has been interpreted either as reversible demyelination due to AED toxicity or transient oedema after secondary generalised seizures. The data confirm neither of these hypotheses. A transient lesion in the SCC seems to be a non-specific end point of different disease processes leading to a vasogenic oedema. This suggests, in these patients, a multifactorial pathology triggered by transient effects of AEDs on arginine vasopressine and its function in fluid balance systems in a condition of vitamin deficiency. The complete and rapid reversibility in all cases without specific intervention is emphasised and any invasive diagnostic or therapeutic approach is discouraged.



Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboitiz F., Scheibel A. B., Fisher R. S., Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992 Dec 11;598(1-2):143–153. doi: 10.1016/0006-8993(92)90178-c. [DOI] [PubMed] [Google Scholar]
  2. Born J. D., Hans P., Smitz S., Legros J. J., Kay S. Syndrome of inappropriate secretion of antidiuretic hormone after severe head injury. Surg Neurol. 1985 Apr;23(4):383–387. doi: 10.1016/0090-3019(85)90212-5. [DOI] [PubMed] [Google Scholar]
  3. Cecil K. M., Hills E. C., Sandel M. E., Smith D. H., McIntosh T. K., Mannon L. J., Sinson G. P., Bagley L. J., Grossman R. I., Lenkinski R. E. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998 May;88(5):795–801. doi: 10.3171/jns.1998.88.5.0795. [DOI] [PubMed] [Google Scholar]
  4. Cordoliani Y. S., Sarrazin J. L., Felten D., Caumes E., Lévêque C., Fisch A. MR of cerebral malaria. AJNR Am J Neuroradiol. 1998 May;19(5):871–874. [PMC free article] [PubMed] [Google Scholar]
  5. Dóczi T., Szerdahelyi P., Gulya K., Kiss J. Brain water accumulation after the central administration of vasopressin. Neurosurgery. 1982 Sep;11(3):402–407. doi: 10.1227/00006123-198209000-00011. [DOI] [PubMed] [Google Scholar]
  6. Dóczi T., Tarjányi J., Huszka E., Kiss J. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) after head injury. Neurosurgery. 1982 Jun;10(6 Pt 1):685–688. doi: 10.1227/00006123-198206010-00001. [DOI] [PubMed] [Google Scholar]
  7. Ferracci F., Conte F., Gentile M., Candeago R., Foscolo L., Bendini M., Fassetta G. Marchiafava-Bignami disease: computed tomographic scan, 99mTc HMPAO-SPECT, and FLAIR MRI findings in a patient with subcortical aphasia, alexia, bilateral agraphia, and left-handed deficit of constructional ability. Arch Neurol. 1999 Jan;56(1):107–110. doi: 10.1001/archneur.56.1.107. [DOI] [PubMed] [Google Scholar]
  8. Fichman M. P., Kleeman C. R., Bethune J. E. Inhibition of antidiuretic hormone secretion by diphenylhydantoin. Arch Neurol. 1970 Jan;22(1):45–53. doi: 10.1001/archneur.1970.00480190049008. [DOI] [PubMed] [Google Scholar]
  9. Gabriel S., Grossmann A., Höppner J., Benecke R., Rolfs A. Marchiafava-Bignami-Syndrom. Extrapontine Myelinolyse bei chronischem Alkoholmissbrauch. Nervenarzt. 1999 Apr;70(4):349–356. doi: 10.1007/s001150050447. [DOI] [PubMed] [Google Scholar]
  10. Ghatak N. R., Hadfield M. G., Rosenblum W. I. Association of central pontine myelinolysis and Marchiafave-Bignami disease. Neurology. 1978 Dec;28(12):1295–1298. doi: 10.1212/wnl.28.12.1295. [DOI] [PubMed] [Google Scholar]
  11. Hackett P. H., Yarnell P. R., Hill R., Reynard K., Heit J., McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA. 1998 Dec 9;280(22):1920–1925. doi: 10.1001/jama.280.22.1920. [DOI] [PubMed] [Google Scholar]
  12. Hauser R. A., Lacey D. M., Knight M. R. Hypertensive encephalopathy. Magnetic resonance imaging demonstration of reversible cortical and white matter lesions. Arch Neurol. 1988 Oct;45(10):1078–1083. doi: 10.1001/archneur.1988.00520340032007. [DOI] [PubMed] [Google Scholar]
  13. Heepe P., Nemeth L., Brune F., Grant J. W., Kleihues P. Marchiafava-Bignami disease. A correlative computed tomography and morphological study. Eur Arch Psychiatry Neurol Sci. 1988;237(2):74–79. doi: 10.1007/BF00382370. [DOI] [PubMed] [Google Scholar]
  14. Henry T. R., Drury I., Brunberg J. A., Pennell P. B., McKeever P. E., Beydoun A. Focal cerebral magnetic resonance changes associated with partial status epilepticus. Epilepsia. 1994 Jan-Feb;35(1):35–41. doi: 10.1111/j.1528-1157.1994.tb02909.x. [DOI] [PubMed] [Google Scholar]
  15. Highley J. R., Esiri M. M., McDonald B., Cortina-Borja M., Herron B. M., Crow T. J. The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain. 1999 Jan;122(Pt 1):99–110. doi: 10.1093/brain/122.1.99. [DOI] [PubMed] [Google Scholar]
  16. Ito T., Sakai T., Inagawa S., Utsu M., Bun T. MR angiography of cerebral vasospasm in preeclampsia. AJNR Am J Neuroradiol. 1995 Jun-Jul;16(6):1344–1346. [PMC free article] [PubMed] [Google Scholar]
  17. Kakou M., Velut S., Destrieux C. Vascularisation artérielle et veineuse du corps calleux. Neurochirurgie. 1998 May;44(1 Suppl):31–37. [PubMed] [Google Scholar]
  18. Kim S. S., Chang K. H., Kim S. T., Suh D. C., Cheon J. E., Jeong S. W., Han M. H., Lee S. K. Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR Am J Neuroradiol. 1999 Jan;20(1):125–129. [PubMed] [Google Scholar]
  19. Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236–239. doi: 10.1007/BF00691095. [DOI] [PubMed] [Google Scholar]
  20. Kramer R. E., Lüders H., Lesser R. P., Weinstein M. R., Dinner D. S., Morris H. H., Wyllie E. Transient focal abnormalities of neuroimaging studies during focal status epilepticus. Epilepsia. 1987 Sep-Oct;28(5):528–532. doi: 10.1111/j.1528-1157.1987.tb03683.x. [DOI] [PubMed] [Google Scholar]
  21. Krause K. H., Rascher W., Berlit P. Plasma arginine vasopressin concentrations in epileptics under monotherapy. J Neurol. 1983;230(3):193–196. doi: 10.1007/BF00313630. [DOI] [PubMed] [Google Scholar]
  22. Lamantia A. S., Rakic P. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol. 1990 Jan 22;291(4):520–537. doi: 10.1002/cne.902910404. [DOI] [PubMed] [Google Scholar]
  23. Mendelsohn D. B., Levin H. S., Harward H., Bruce D. Corpus callosum lesions after closed head injury in children: MRI, clinical features and outcome. Neuroradiology. 1992;34(5):384–388. doi: 10.1007/BF00596495. [DOI] [PubMed] [Google Scholar]
  24. Moody D. M., Bell M. A., Challa V. R. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol. 1990 May;11(3):431–439. [PMC free article] [PubMed] [Google Scholar]
  25. Moody D. M., Bell M. A., Challa V. R. The corpus callosum, a unique white-matter tract: anatomic features that may explain sparing in Binswanger disease and resistance to flow of fluid masses. AJNR Am J Neuroradiol. 1988 Nov-Dec;9(6):1051–1059. [PMC free article] [PubMed] [Google Scholar]
  26. Ogura H., Takaoka M., Kishi M., Kimoto M., Shimazu T., Yoshioka T., Sugimoto H. Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. AJNR Am J Neuroradiol. 1998 Jun-Jul;19(6):1144–1145. [PMC free article] [PubMed] [Google Scholar]
  27. Padilla G., Leake J. A., Castro R., Ervin M. G., Ross M. G., Leake R. D. Vasopressin levels and pediatric head trauma. Pediatrics. 1989 May;83(5):700–705. [PubMed] [Google Scholar]
  28. Raichle M. E., Grubb R. L., Jr Regulation of brain water permeability by centrally-released vasopressin. Brain Res. 1978 Mar 17;143(1):191–194. doi: 10.1016/0006-8993(78)90766-7. [DOI] [PubMed] [Google Scholar]
  29. Ramaekers V. T., Reul J., Kusenbach G., Thron A., Heimann G. Central pontine myelinolysis associated with acquired folate depletion. Neuropediatrics. 1997 Apr;28(2):126–130. doi: 10.1055/s-2007-973686. [DOI] [PubMed] [Google Scholar]
  30. Silverstein A. M., Alexander J. A. Acute postictal cerebral imaging. AJNR Am J Neuroradiol. 1998 Sep;19(8):1485–1488. [PMC free article] [PubMed] [Google Scholar]
  31. Soelberg Sørensen P., Hammer M. Effects of long-term carbamazepine treatment on water metabolism and plasma vasopressin concentration. Eur J Clin Pharmacol. 1984;26(6):719–722. doi: 10.1007/BF00541931. [DOI] [PubMed] [Google Scholar]
  32. Sordillo P., Sagransky D. M., Mercado R. M., Michelis M. F. Carbamazepine-induced syndrome of inappropriate antidiuretic hormone secretion. Reversal by concomitant phenytoin therapy. Arch Intern Med. 1978 Feb;138(2):299–301. [PubMed] [Google Scholar]
  33. Stephens W. P., Coe J. Y., Baylis P. H. Plasma arginine vasopressin concentrations and antidiuretic action of carbamazepine. Br Med J. 1978 Jun 3;1(6125):1445–1447. doi: 10.1136/bmj.1.6125.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sterns R. H., Riggs J. E., Schochet S. S., Jr Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986 Jun 12;314(24):1535–1542. doi: 10.1056/NEJM198606123142402. [DOI] [PubMed] [Google Scholar]
  35. Strohmaier A., Fink G. A., Hüppe T., Friedrich M. Verlauf einer zentralen pontinen Myelinolyse mit klinischer Erholung. Radiologe. 1995 Apr;35(4):294–296. [PubMed] [Google Scholar]
  36. Tennison M. Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR Am J Neuroradiol. 1999 Jan;20(1):131–132. [PubMed] [Google Scholar]
  37. Tokutomi T., Hirohata M., Miyagi T., Abe T., Shigemori M. Posttraumatic edema in the corpus callosum shown by MRI. Acta Neurochir Suppl. 1997;70:80–83. doi: 10.1007/978-3-7091-6837-0_25. [DOI] [PubMed] [Google Scholar]
  38. Tsugane S., Suzuki Y., Takayasu M., Shibuya M., Sugita K. Effects of vasopressin on regional cerebral blood flow in dogs. J Auton Nerv Syst. 1994 Sep;49 (Suppl):S133–S136. doi: 10.1016/0165-1838(94)90101-5. [DOI] [PubMed] [Google Scholar]
  39. Tuxhorn I., Holthausen H., Ebner A., Noachtar S. Reversible cortical oedema mimicking cortical dysplasia in mitochondrial disorder. J Neurol Neurosurg Psychiatry. 1994 Nov;57(11):1439–1439. doi: 10.1136/jnnp.57.11.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yaffe K., Ferriero D., Barkovich A. J., Rowley H. Reversible MRI abnormalities following seizures. Neurology. 1995 Jan;45(1):104–108. doi: 10.1212/wnl.45.1.104. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES