Abstract
OBJECTIVES—Brain plasticity is supposed to allow the compensation of motor function in cases of rolandic lesion. The aim was to analyse the mechanisms of functional reorganisation during surgery in the central area. METHODS—A motor brain mapping was performed in three right handed patients without any neurological deficit, operated on for a slow growing lesion near the rolandic region (two precentral resected under general anaesthesia and one retrocentral removed under local anaesthesia to allow also sensory mapping) using intraoperative direct electrical stimulations (5 mm space tips bipolar stimulator probe, biphasic square wave pulse current: 1 ms/phase, 60 Hz, 4 to 18mA). RESULTS—For each patient, the motor areas of the hand and forearm in the primary motor cortex (M1) were identified before and after lesion removal with the same stimulation parameters: the same eloquent sites were found, plus the appearance after resection of additional sites in M1 inducing the same movement during stimulations as the previous areas. CONCLUSIONS—Multiple cortical representations for hand and forearm movements in M1 seem to exist. In addition, the results demonstrate the short term capacity of the brain to make changes in local motor maps, by sudden unmasking after tumour resection of a second redundant site participating in the same movement. Finally, it seems not necessary for the whole of the redundant sites to be functional to provide normal movement, a concept with potential implications for surgery within the central region.
Full Text
The Full Text of this article is available as a PDF (359.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P., Hagan P. J., Phillips C. G., Powell T. P. Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon's hand. Proc R Soc Lond B Biol Sci. 1975 Jan 21;188(1090):31–36. doi: 10.1098/rspb.1975.0002. [DOI] [PubMed] [Google Scholar]
- Asanuma H., Rosén I. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res. 1972;14(3):243–256. doi: 10.1007/BF00816161. [DOI] [PubMed] [Google Scholar]
- Benecke R., Meyer B. U., Freund H. J. Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp Brain Res. 1991;83(2):419–426. doi: 10.1007/BF00231167. [DOI] [PubMed] [Google Scholar]
- Berger M. S., Ojemann G. A. Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg. 1992;58(1-4):153–161. doi: 10.1159/000098989. [DOI] [PubMed] [Google Scholar]
- Brasil-Neto J. P., Cohen L. G., Pascual-Leone A., Jabir F. K., Wall R. T., Hallett M. Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology. 1992 Jul;42(7):1302–1306. doi: 10.1212/wnl.42.7.1302. [DOI] [PubMed] [Google Scholar]
- Donoghue J. P., Leibovic S., Sanes J. N. Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res. 1992;89(1):1–19. doi: 10.1007/BF00228996. [DOI] [PubMed] [Google Scholar]
- Donoghue J. P., Suner S., Sanes J. N. Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Exp Brain Res. 1990;79(3):492–503. doi: 10.1007/BF00229319. [DOI] [PubMed] [Google Scholar]
- Duffau H., Capelle L., Sichez J., Faillot T., Abdennour L., Law Koune J. D., Dadoun S., Bitar A., Arthuis F., Van Effenterre R. Intra-operative direct electrical stimulations of the central nervous system: the Salpêtrière experience with 60 patients. Acta Neurochir (Wien) 1999;141(11):1157–1167. doi: 10.1007/s007010050413. [DOI] [PubMed] [Google Scholar]
- Fisher C. M. Concerning the mechanism of recovery in stroke hemiplegia. Can J Neurol Sci. 1992 Feb;19(1):57–63. [PubMed] [Google Scholar]
- Gould H. J., 3rd, Cusick C. G., Pons T. P., Kaas J. H. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol. 1986 May 15;247(3):297–325. doi: 10.1002/cne.902470303. [DOI] [PubMed] [Google Scholar]
- Haglund M. M., Ojemann G. A., Blasdel G. G. Optical imaging of bipolar cortical stimulation. J Neurosurg. 1993 May;78(5):785–793. doi: 10.3171/jns.1993.78.5.0785. [DOI] [PubMed] [Google Scholar]
- Humphrey D. R. Representation of movements and muscles within the primate precentral motor cortex: historical and current perspectives. Fed Proc. 1986 Nov;45(12):2687–2699. [PubMed] [Google Scholar]
- Jacobs K. M., Donoghue J. P. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991 Feb 22;251(4996):944–947. doi: 10.1126/science.2000496. [DOI] [PubMed] [Google Scholar]
- Kwan H. C., MacKay W. A., Murphy J. T., Wong Y. C. Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol. 1978 Sep;41(5):1120–1131. doi: 10.1152/jn.1978.41.5.1120. [DOI] [PubMed] [Google Scholar]
- Lewine J. D., Astur R. S., Davis L. E., Knight J. E., Maclin E. L., Orrison W. W., Jr Cortical organization in adulthood is modified by neonatal infarct: a case study. Radiology. 1994 Jan;190(1):93–96. doi: 10.1148/radiology.190.1.8259435. [DOI] [PubMed] [Google Scholar]
- Mogilner A., Grossman J. A., Ribary U., Joliot M., Volkmann J., Rapaport D., Beasley R. W., Llinás R. R. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3593–3597. doi: 10.1073/pnas.90.8.3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nudo R. J., Milliken G. W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996 May;75(5):2144–2149. doi: 10.1152/jn.1996.75.5.2144. [DOI] [PubMed] [Google Scholar]
- Ojemann G., Ojemann J., Lettich E., Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989 Sep;71(3):316–326. doi: 10.3171/jns.1989.71.3.0316. [DOI] [PubMed] [Google Scholar]
- PHILLIPS C. G., PORTER R. THE PYRAMIDAL PROJECTION TO MOTONEURONES OF SOME MUSCLE GROUPS OF THE BABOON'S FORELIMB. Prog Brain Res. 1964;12:222–245. doi: 10.1016/s0079-6123(08)60625-1. [DOI] [PubMed] [Google Scholar]
- Ramachandran V. S. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10413–10420. doi: 10.1073/pnas.90.22.10413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanes J. N., Donoghue J. P. Static and dynamic organization of motor cortex. Adv Neurol. 1997;73:277–296. [PubMed] [Google Scholar]
- Sanes J. N., Donoghue J. P., Thangaraj V., Edelman R. R., Warach S. Shared neural substrates controlling hand movements in human motor cortex. Science. 1995 Jun 23;268(5218):1775–1777. doi: 10.1126/science.7792606. [DOI] [PubMed] [Google Scholar]
- Sanes J. N., Wang J., Donoghue J. P. Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb Cortex. 1992 Mar-Apr;2(2):141–152. doi: 10.1093/cercor/2.2.141. [DOI] [PubMed] [Google Scholar]
- Sasaki K., Gemba H. Compensatory motor function of the somatosensory cortex for the motor cortex temporarily impaired by cooling in the monkey. Exp Brain Res. 1984;55(1):60–68. doi: 10.1007/BF00240498. [DOI] [PubMed] [Google Scholar]
- Sato K. C., Tanji J. Digit-muscle responses evoked from multiple intracortical foci in monkey precentral motor cortex. J Neurophysiol. 1989 Oct;62(4):959–970. doi: 10.1152/jn.1989.62.4.959. [DOI] [PubMed] [Google Scholar]
- Schieber M. H., Hibbard L. S. How somatotopic is the motor cortex hand area? Science. 1993 Jul 23;261(5120):489–492. doi: 10.1126/science.8332915. [DOI] [PubMed] [Google Scholar]
- Seitz R. J., Huang Y., Knorr U., Tellmann L., Herzog H., Freund H. J. Large-scale plasticity of the human motor cortex. Neuroreport. 1995 Mar 27;6(5):742–744. doi: 10.1097/00001756-199503270-00009. [DOI] [PubMed] [Google Scholar]
- Skirboll S. S., Ojemann G. A., Berger M. S., Lettich E., Winn H. R. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996 Apr;38(4):678–685. [PubMed] [Google Scholar]
- Waters R. S., Samulack D. D., Dykes R. W., McKinley P. A. Topographic organization of baboon primary motor cortex: face, hand, forelimb, and shoulder representation. Somatosens Mot Res. 1990;7(4):485–514. doi: 10.3109/08990229009144721. [DOI] [PubMed] [Google Scholar]
- Weiller C., Chollet F., Friston K. J., Wise R. J., Frackowiak R. S. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol. 1992 May;31(5):463–472. doi: 10.1002/ana.410310502. [DOI] [PubMed] [Google Scholar]
- Wunderlich G., Knorr U., Herzog H., Kiwit J. C., Freund H. J., Seitz R. J. Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery. 1998 Jan;42(1):18–27. doi: 10.1097/00006123-199801000-00005. [DOI] [PubMed] [Google Scholar]