Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 May;70(5):657–661. doi: 10.1136/jnnp.70.5.657

Benzodiazepine receptor quantification in Huntington's disease with [123I]iomazenil and SPECT

L Pinborg 1, C Videbak 1, S Hasselbalch 1, S Sorensen 1, A Wagner 1, O Paulson 1, G Knudsen 1
PMCID: PMC1737353  PMID: 11309461

Abstract

OBJECTIVES—Increasing evidence suggests that metabolic changes predate neuronal death in Huntington's disease and emission tomography methods (PET and SPECT) have shown changes in glucose consumption and receptor function in early and possibly even presymptomatic disease. Because the GABAA-benzodiazepine receptor complex (BZR) is expressed on virtually all cerebral neurons BZR density images may be used to detect neuronal death. In this study the regional cerebral [123I]iomazenil binding to BZR was determined in patients with Huntington's disease and normal controls by a steady state method and SPECT.
METHODS—Seven patients mildly to moderately affected by Huntington's disease and seven age matched controls were studied. Brain CT was performed on all subjects. In each subject two [123I]iomazenil-SPECT measurements were acquired—one with and one without infusion of flumazenil. The affinity constant of flumazenil (Kd) was calculated from the paired distribution volumes (DV) and the free plasma flumazenil concentration. The distribution volume of [123I]iomazenil in the unblocked condition (DV0) reflects the ratio between BZR density and Kd.
RESULTS—Flumazenil Kd was similar in the Huntington's disease group and the control group (11.3 v 11.2 mM). For the Huntington's disease group a 31% reduction in striatal DV0 (p=0.03) was found. In the cortical regions, DV0 was similar in patients and in controls. In Huntington's disease, DV0 correlated significantly with functional capacity (p=0.04) and chorea symptoms (p=0.02). The clinically least affected patients displayed DV0s within the range of those of the control group (19-35 ml/ml).
CONCLUSIONS—The finding of an unchanged Kd of flumazenil in patients indicates that the BZR is functionally intact in Huntington's disease. That is, the reduction in DV0 for BZR represents a selective decrease in the number of striatal BZRs. DV0 significantly correlated with functional loss and [123I]iomazenil-SPECT could be an important tool for validation of the effect of future therapeutic strategies aimed at limiting oxidative stress and free radicals in Huntington's disease.



Full Text

The Full Text of this article is available as a PDF (157.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr A. N., Heinze W. J., Dobben G. D., Valvassori G. E., Sugar O. Bicaudate index in computerized tomography of Huntington disease and cerebral atrophy. Neurology. 1978 Nov;28(11):1196–1200. doi: 10.1212/wnl.28.11.1196. [DOI] [PubMed] [Google Scholar]
  2. Browne S. E., Ferrante R. J., Beal M. F. Oxidative stress in Huntington's disease. Brain Pathol. 1999 Jan;9(1):147–163. doi: 10.1111/j.1750-3639.1999.tb00216.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hasselbalch S. G., Oberg G., Sørensen S. A., Andersen A. R., Waldemar G., Schmidt J. F., Fenger K., Paulson O. B. Reduced regional cerebral blood flow in Huntington's disease studied by SPECT. J Neurol Neurosurg Psychiatry. 1992 Nov;55(11):1018–1023. doi: 10.1136/jnnp.55.11.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hayden M. R., Martin W. R., Stoessl A. J., Clark C., Hollenberg S., Adam M. J., Ammann W., Harrop R., Rogers J., Ruth T. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology. 1986 Jul;36(7):888–894. doi: 10.1212/wnl.36.7.888. [DOI] [PubMed] [Google Scholar]
  5. Holthoff V. A., Koeppe R. A., Frey K. A., Penney J. B., Markel D. S., Kuhl D. E., Young A. B. Positron emission tomography measures of benzodiazepine receptors in Huntington's disease. Ann Neurol. 1993 Jul;34(1):76–81. doi: 10.1002/ana.410340114. [DOI] [PubMed] [Google Scholar]
  6. Jenner P. Oxidative stress in Parkinson's disease and other neurodegenerative disorders. Pathol Biol (Paris) 1996 Jan;44(1):57–64. [PubMed] [Google Scholar]
  7. Kuhl D. E., Phelps M. E., Markham C. H., Metter E. J., Riege W. H., Winter J. Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982 Nov;12(5):425–434. doi: 10.1002/ana.410120504. [DOI] [PubMed] [Google Scholar]
  8. Kuwert T., Lange H. W., Boecker H., Titz H., Herzog H., Aulich A., Wang B. C., Nayak U., Feinendegen L. E. Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease. J Neurol. 1993 Nov;241(1):31–36. doi: 10.1007/BF00870669. [DOI] [PubMed] [Google Scholar]
  9. Kuwert T., Lange H. W., Langen K. J., Herzog H., Aulich A., Feinendegen L. E. Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain. 1990 Oct;113(Pt 5):1405–1423. doi: 10.1093/brain/113.5.1405. [DOI] [PubMed] [Google Scholar]
  10. Lassen N. A., Bartenstein P. A., Lammertsma A. A., Prevett M. C., Turton D. R., Luthra S. K., Osman S., Bloomfield P. M., Jones T., Patsalos P. N. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab. 1995 Jan;15(1):152–165. doi: 10.1038/jcbfm.1995.17. [DOI] [PubMed] [Google Scholar]
  11. Lassen N. A. Neuroreceptor quantitation in vivo by the steady-state principle using constant infusion or bolus injection of radioactive tracers. J Cereb Blood Flow Metab. 1992 Sep;12(5):709–716. doi: 10.1038/jcbfm.1992.101. [DOI] [PubMed] [Google Scholar]
  12. Martin J. B., Gusella J. F. Huntington's disease. Pathogenesis and management. N Engl J Med. 1986 Nov 13;315(20):1267–1276. doi: 10.1056/NEJM198611133152006. [DOI] [PubMed] [Google Scholar]
  13. Martin W. R., Clark C., Ammann W., Stoessl A. J., Shtybel W., Hayden M. R. Cortical glucose metabolism in Huntington's disease. Neurology. 1992 Jan;42(1):223–229. doi: 10.1212/wnl.42.1.223. [DOI] [PubMed] [Google Scholar]
  14. Mazziotta J. C., Phelps M. E., Pahl J. J., Huang S. C., Baxter L. R., Riege W. H., Hoffman J. M., Kuhl D. E., Lanto A. B., Wapenski J. A. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. N Engl J Med. 1987 Feb 12;316(7):357–362. doi: 10.1056/NEJM198702123160701. [DOI] [PubMed] [Google Scholar]
  15. Olsen R. W. The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol Cell Biochem. 1981 Sep 25;39:261–279. doi: 10.1007/BF00232579. [DOI] [PubMed] [Google Scholar]
  16. Ribak C. E., Vaughn J. E., Roberts E. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. J Comp Neurol. 1979 Sep 15;187(2):261–283. doi: 10.1002/cne.901870203. [DOI] [PubMed] [Google Scholar]
  17. Richardson M. P., Friston K. J., Sisodiya S. M., Koepp M. J., Ashburner J., Free S. L., Brooks D. J., Duncan J. S. Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data. Brain. 1997 Nov;120(Pt 11):1961–1973. doi: 10.1093/brain/120.11.1961. [DOI] [PubMed] [Google Scholar]
  18. Sedvall G., Karlsson P., Lundin A., Anvret M., Suhara T., Halldin C., Farde L. Dopamine D1 receptor number--a sensitive PET marker for early brain degeneration in Huntington's disease. Eur Arch Psychiatry Clin Neurosci. 1994;243(5):249–255. doi: 10.1007/BF02191583. [DOI] [PubMed] [Google Scholar]
  19. Shoulson I., Fahn S. Huntington disease: clinical care and evaluation. Neurology. 1979 Jan;29(1):1–3. doi: 10.1212/wnl.29.1.1. [DOI] [PubMed] [Google Scholar]
  20. Stokely E. M., Sveinsdottir E., Lassen N. A., Rommer P. A single photon dynamic computer assisted tomograph (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr. 1980 Apr;4(2):230–240. doi: 10.1097/00004728-198004000-00022. [DOI] [PubMed] [Google Scholar]
  21. Terrence C. F., Delaney J. F., Alberts M. C. Computed tomography for Huntington's disease. Neuroradiology. 1977 Jun 27;13(4):173–175. doi: 10.1007/BF00344209. [DOI] [PubMed] [Google Scholar]
  22. Videbaek C., Friberg L., Holm S., Wammen S., Foged C., Andersen J. V., Dalgaard L., Lassen N. A. Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer [123I]iomazenil. Eur J Pharmacol. 1993 Nov 2;249(1):43–51. doi: 10.1016/0014-2999(93)90660-a. [DOI] [PubMed] [Google Scholar]
  23. Walker F. O., Young A. B., Penney J. B., Dovorini-Zis K., Shoulson I. Benzodiazepine and GABA receptors in early Huntington's disease. Neurology. 1984 Sep;34(9):1237–1240. doi: 10.1212/wnl.34.9.1237. [DOI] [PubMed] [Google Scholar]
  24. Weinberger D. R., Berman K. F., Iadarola M., Driesen N., Zec R. F. Prefrontal cortical blood flow and cognitive function in Huntington's disease. J Neurol Neurosurg Psychiatry. 1988 Jan;51(1):94–104. doi: 10.1136/jnnp.51.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES