Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jan;64(1):120–127. doi: 10.1128/iai.64.1.120-127.1996

A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27-peptide complexes with low stringency for peptide sequences.

F Huang 1, E Hermann 1, J Wang 1, X K Cheng 1, W C Tsai 1, J Wen 1, J G Kuipers 1, H Kellner 1, B Ackermann 1, G Roth 1, K M Williams 1, D K Yu 1, R B Raybourne 1
PMCID: PMC173736  PMID: 8557329

Abstract

HLA-B27 molecules expressed on the T2 mutant cell line do not have peptides. Such empty HLA-B27 molecules were not recognized by an HLA-B27-restricted cytotoxic T-lymphocyte (CTL) clone (auto-1) derived from synovial fluid. To test for peptide dependency of the clone, B27-T2 cells were incubated with a panel of 48 different peptides. This lack of stringency was compared with that of a peptide-dependent monoclonal antibody, B27.M2. Positive B27.M2 reactivity resulted when the B27-T2 cells were incubated with two peptides: RRKAMFEDI and RRMGPPVGHR, derived from Chlamydia HSP60 and human ribonucleoprotein, respectively. Because of the limited availability of CTL versus monoclonal antibody, the specificity of B27.M2 was studied in greater detail. The importance of the HLA-B27 heavy chain in antibody recognition of class I-peptide complexes was demonstrated by site-directed mutagenesis. The stringency of the peptide residues was tested by making analogs of each of the nine residues in RRKAMFEDI, creating a panel of 180 analogs. Although stringency was highest for the sixth position, as many as six different amino acids provided positive reactivity. These results indicate that immune recognition of HLA-B27-peptide complexes might have rather low stringency for the peptide sequences. In theory, then, pathogen-derived peptides which induce autoimmunity by generating autoreactive CTL might not share much sequence similarity with the responsible self peptides.

Full Text

The Full Text of this article is available as a PDF (301.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benjamin R., Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990 Apr;11(4):137–142. doi: 10.1016/0167-5699(90)90051-a. [DOI] [PubMed] [Google Scholar]
  2. Bluestone J. A., Jameson S., Miller S., Dick R., 2nd Peptide-induced conformational changes in class I heavy chains alter major histocompatibility complex recognition. J Exp Med. 1992 Dec 1;176(6):1757–1761. doi: 10.1084/jem.176.6.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bluestone J. A., Kaliyaperumal A., Jameson S., Miller S., Dick R., 2nd Peptide-induced changes in class I heavy chains alter allorecognition. J Immunol. 1993 Oct 15;151(8):3943–3953. [PubMed] [Google Scholar]
  4. Catipović B., Dal Porto J., Mage M., Johansen T. E., Schneck J. P. Major histocompatibility complex conformational epitopes are peptide specific. J Exp Med. 1992 Dec 1;176(6):1611–1618. doi: 10.1084/jem.176.6.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerrone M. C., Ma J. J., Stephens R. S. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun. 1991 Jan;59(1):79–90. doi: 10.1128/iai.59.1.79-90.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chattopadhyay S., Theobald M., Biggs J., Sherman L. A. Conformational differences in major histocompatibility complex-peptide complexes can result in alloreactivity. J Exp Med. 1994 Jan 1;179(1):213–219. doi: 10.1084/jem.179.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen J. H., Kono D. H., Yong Z., Park M. S., Oldstone M. M., Yu D. T. A Yersinia pseudotuberculosis protein which cross-reacts with HLA-B27. J Immunol. 1987 Nov 1;139(9):3003–3011. [PubMed] [Google Scholar]
  8. Chen W., McCluskey J., Rodda S., Carbone F. R. Changes at peptide residues buried in the major histocompatibility complex (MHC) class I binding cleft influence T cell recognition: a possible role for indirect conformational alterations in the MHC class I or bound peptide in determining T cell recognition. J Exp Med. 1993 Mar 1;177(3):869–873. doi: 10.1084/jem.177.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Claverie J. M., Prochnicka-Chalufour A., Bougueleret L. Implications of a Fab-like structure for the T-cell receptor. Immunol Today. 1989 Jan;10(1):10–14. doi: 10.1016/0167-5699(89)90058-3. [DOI] [PubMed] [Google Scholar]
  10. Ellis S. A., Taylor C., McMichael A. Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol. 1982 Aug;5(1):49–59. doi: 10.1016/0198-8859(82)90030-1. [DOI] [PubMed] [Google Scholar]
  11. Fremont D. H., Matsumura M., Stura E. A., Peterson P. A., Wilson I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science. 1992 Aug 14;257(5072):919–927. doi: 10.1126/science.1323877. [DOI] [PubMed] [Google Scholar]
  12. Fukazawa T., Hermann E., Edidin M., Wen J., Huang F., Kellner H., Floege J., Farahmandian D., Williams K. M., Yu D. T. The effect of mutant beta 2-microglobulins on the conformation of HLA-B27 detected by antibody and by CTL. J Immunol. 1994 Oct 15;153(8):3543–3550. [PubMed] [Google Scholar]
  13. Fukazawa T., Wang J., Huang F., Wen J., Tyan D., Williams K. M., Raybourne R. B., Yu D. T. Testing the importance of each residue in a HLA-B27-binding peptide using monoclonal antibodies. J Immunol. 1994 Feb 1;152(3):1190–1196. [PubMed] [Google Scholar]
  14. Granfors K., Jalkanen S., Lindberg A. A., Mäki-Ikola O., von Essen R., Lahesmaa-Rantala R., Isomäki H., Saario R., Arnold W. J., Toivanen A. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet. 1990 Mar 24;335(8691):685–688. doi: 10.1016/0140-6736(90)90804-e. [DOI] [PubMed] [Google Scholar]
  15. Grumet F. C., Fendly B. M., Fish L., Foung S., Engleman E. G. Monoclonal antibody (B27M2) subdividing HLA-B27. Hum Immunol. 1982 Aug;5(1):61–72. doi: 10.1016/0198-8859(82)90031-3. [DOI] [PubMed] [Google Scholar]
  16. Hammer R. E., Maika S. D., Richardson J. A., Tang J. P., Taurog J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990 Nov 30;63(5):1099–1112. doi: 10.1016/0092-8674(90)90512-d. [DOI] [PubMed] [Google Scholar]
  17. Hermann E., Yu D. T., Meyer zum Büschenfelde K. H., Fleischer B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet. 1993 Sep 11;342(8872):646–650. doi: 10.1016/0140-6736(93)91760-j. [DOI] [PubMed] [Google Scholar]
  18. Hogquist K. A., Grandea A. G., 3rd, Bevan M. J. Peptide variants reveal how antibodies recognize major histocompatibility complex class I. Eur J Immunol. 1993 Nov;23(11):3028–3036. doi: 10.1002/eji.1830231145. [DOI] [PubMed] [Google Scholar]
  19. Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacher C., Strominger J. L., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature. 1994 Apr 21;368(6473):711–718. doi: 10.1038/368711a0. [DOI] [PubMed] [Google Scholar]
  20. Jardetzky T. S., Lane W. S., Robinson R. A., Madden D. R., Wiley D. C. Identification of self peptides bound to purified HLA-B27. Nature. 1991 Sep 26;353(6342):326–329. doi: 10.1038/353326a0. [DOI] [PubMed] [Google Scholar]
  21. Kellner H., Wen J., Wang J., Raybourne R. B., Williams K. M., Yu D. T. Serum antibodies from patients with ankylosing spondylitis and Reiter's syndrome are reactive with HLA-B27 cells transfected with the Mycobacterium tuberculosis hsp60 gene. Infect Immun. 1994 Feb;62(2):484–491. doi: 10.1128/iai.62.2.484-491.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Madden D. R., Garboczi D. N., Wiley D. C. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell. 1993 Nov 19;75(4):693–708. doi: 10.1016/0092-8674(93)90490-h. [DOI] [PubMed] [Google Scholar]
  23. Madden D. R., Gorga J. C., Strominger J. L., Wiley D. C. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell. 1992 Sep 18;70(6):1035–1048. doi: 10.1016/0092-8674(92)90252-8. [DOI] [PubMed] [Google Scholar]
  24. Momburg F., Ortiz-Navarrete V., Neefjes J., Goulmy E., van de Wal Y., Spits H., Powis S. J., Butcher G. W., Howard J. C., Walden P. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature. 1992 Nov 12;360(6400):174–177. doi: 10.1038/360174a0. [DOI] [PubMed] [Google Scholar]
  25. Rohren E. M., McCormick D. J., Pease L. R. Peptide-induced conformational changes in class I molecules. Direct detection by flow cytometry. J Immunol. 1994 Jun 1;152(11):5337–5343. [PubMed] [Google Scholar]
  26. Rötzschke O., Falk K., Faath S., Rammensee H. G. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991 Nov 1;174(5):1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rötzschke O., Falk K., Stevanović S., Gnau V., Jung G., Rammensee H. G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics. 1994;39(1):74–77. doi: 10.1007/BF00171803. [DOI] [PubMed] [Google Scholar]
  28. Sherman L. A., Chattopadhyay S., Biggs J. A., Dick R. F., 2nd, Bluestone J. A. Alloantibodies can discriminate class I major histocompatibility complex molecules associated with various endogenous peptides. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6949–6951. doi: 10.1073/pnas.90.15.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taurog J. D., el-Zaatari F. A. In vitro mutagenesis of HLA-B27. Substitution of an unpaired cysteine residue in the alpha 1 domain causes loss of antibody-defined epitopes. J Clin Invest. 1988 Sep;82(3):987–992. doi: 10.1172/JCI113708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toubert A., Raffoux C., Boretto J., Sire J., Sodoyer R., Thurau S. R., Amor B., Colombani J., Lemonnier F. A., Jordan B. R. Epitope mapping of HLA-B27 and HLA-B7 antigens by using intradomain recombinants. J Immunol. 1988 Oct 1;141(7):2503–2509. [PubMed] [Google Scholar]
  31. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  32. Urban R. G., Chicz R. M., Lane W. S., Strominger J. L., Rehm A., Kenter M. J., UytdeHaag F. G., Ploegh H., Uchanska-Ziegler B., Ziegler A. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1534–1538. doi: 10.1073/pnas.91.4.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang J., Yu D. T., Fukazawa T., Kellner H., Wen J., Cheng X. K., Roth G., Williams K. M., Raybourne R. B. A monoclonal antibody that recognizes HLA-B27 in the context of peptides. J Immunol. 1994 Feb 1;152(3):1197–1205. [PubMed] [Google Scholar]
  34. Wen J., Wang J., Kuipers J. G., Huang F., Williams K. M., Raybourne R. B., Yu D. T. Analysis of HLA-B*2705 peptide motif, using T2 cells and monoclonal antibody ME1. Immunogenetics. 1994;39(6):444–446. doi: 10.1007/BF00176165. [DOI] [PubMed] [Google Scholar]
  35. Yu D. T., Hamachi T., Hamachi M., Tribbick G. Analysis of the molecular mimicry between HLA-B27 and a bacterial OmpA protein using synthetic peptides. Clin Exp Immunol. 1991 Sep;85(3):510–514. doi: 10.1111/j.1365-2249.1991.tb05758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES