Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Jun;70(6):749–760. doi: 10.1136/jnnp.70.6.749

Functional MRI for presurgical planning: problems, artefacts, and solution strategies

T Krings 1, M Reinges 1, S Erberich 1, S Kemeny 1, V Rohde 1, U Spetzger 1, M Korinth 1, K Willmes 1, J Gilsbach 1, A Thron 1
PMCID: PMC1737418  PMID: 11385009

Abstract

OJECTIVES—Presurgical mapping of motor function is a widely used clinical application of functional (f) MRI, employing the blood oxygenation level dependent contrast. The aim of this study was to report on 3 years experience of 194 fMRI studies on the representation of motor function in 103 patients and to describe the problems and artefacts that were typically present.
METHODS—An evaluation was carried out to determine whether the patients' age, type or location of the tumourous lesion, severity of the paresis, or the tasks used during the investigation have an effect on artefacts of fMRI studies and how these artefacts are best overcome.
RESULTS—Functional MRI identified the motor regions in 85% of all investigated paradigms. In 11% of the investigated patients no information at all on functional localisation was obtained. A draining vein within the central sulcus was present in all patients that showed activation within the parenchyma of the precentral gyrus but also in three patients in whom no parenchymal activation was present. Head movement artefacts were the most frequent cause for fMRI failure, followed by low signal to noise ratio. Motion artefacts were correlated with the degree of paresis and with the functional task. Tasks involving more proximal muscles led to significantly more motion artefacts when compared with tasks that primarily involved distal muscles. Mean MR signal change during task performance was 2.5%.
CONCLUSIONS—Most of the artefacts of functional MRI can be reliably detected and at least in part be reduced or eliminated with the help of mathematical algorithms, appropriate pulse sequences and tasks, and—probably most important—by evaluating the fMRI raw data—that is, the MR signal time courses.



Full Text

The Full Text of this article is available as a PDF (344.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achten E., Jackson G. D., Cameron J. A., Abbott D. F., Stella D. L., Fabinyi G. C. Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology. 1999 Feb;210(2):529–538. doi: 10.1148/radiology.210.2.r99ja31529. [DOI] [PubMed] [Google Scholar]
  2. Bittar R. G., Olivier A., Sadikot A. F., Andermann F., Pike G. B., Reutens D. C. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg. 1999 Dec;91(6):915–921. doi: 10.3171/jns.1999.91.6.0915. [DOI] [PubMed] [Google Scholar]
  3. Boxerman J. L., Bandettini P. A., Kwong K. K., Baker J. R., Davis T. L., Rosen B. R., Weisskoff R. M. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995 Jul;34(1):4–10. doi: 10.1002/mrm.1910340103. [DOI] [PubMed] [Google Scholar]
  4. Boxerman J. L., Hamberg L. M., Rosen B. R., Weisskoff R. M. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995 Oct;34(4):555–566. doi: 10.1002/mrm.1910340412. [DOI] [PubMed] [Google Scholar]
  5. Buchbinder B. R., Cosgrove G. R. Cortical activation MR studies in brain disorders. Magn Reson Imaging Clin N Am. 1998 Feb;6(1):67–93. [PubMed] [Google Scholar]
  6. Buchner H., Adams L., Knepper A., Rüger R., Laborde G., Gilsbach J. M., Ludwig I., Reul J., Scherg M. Preoperative localization of the central sulcus by dipole source analysis of early somatosensory evoked potentials and three-dimensional magnetic resonance imaging. J Neurosurg. 1994 May;80(5):849–856. doi: 10.3171/jns.1994.80.5.0849. [DOI] [PubMed] [Google Scholar]
  7. Cosgrove G. R., Buchbinder B. R., Jiang H. Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am. 1996 Apr;7(2):313–322. [PubMed] [Google Scholar]
  8. Duvernoy H. M., Delon S., Vannson J. L. Cortical blood vessels of the human brain. Brain Res Bull. 1981 Nov;7(5):519–579. doi: 10.1016/0361-9230(81)90007-1. [DOI] [PubMed] [Google Scholar]
  9. Duyn J. H., Moonen C. T., van Yperen G. H., de Boer R. W., Luyten P. R. Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T. NMR Biomed. 1994 Mar;7(1-2):83–88. doi: 10.1002/nbm.1940070113. [DOI] [PubMed] [Google Scholar]
  10. Dymarkowski S., Sunaert S., Van Oostende S., Van Hecke P., Wilms G., Demaerel P., Nuttin B., Plets C., Marchal G. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol. 1998;8(9):1573–1580. doi: 10.1007/s003300050589. [DOI] [PubMed] [Google Scholar]
  11. Fandino J., Kollias S. S., Wieser H. G., Valavanis A., Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999 Aug;91(2):238–250. doi: 10.3171/jns.1999.91.2.0238. [DOI] [PubMed] [Google Scholar]
  12. Fox P. T., Burton H., Raichle M. E. Mapping human somatosensory cortex with positron emission tomography. J Neurosurg. 1987 Jul;67(1):34–43. doi: 10.3171/jns.1987.67.1.0034. [DOI] [PubMed] [Google Scholar]
  13. Frahm J., Merboldt K. D., Hänicke W., Kleinschmidt A., Boecker H. Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed. 1994 Mar;7(1-2):45–53. doi: 10.1002/nbm.1940070108. [DOI] [PubMed] [Google Scholar]
  14. Ganslandt O., Steinmeier R., Kober H., Vieth J., Kassubek J., Romstöck J., Strauss C., Fahlbusch R. Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery. 1997 Sep;41(3):621–628. doi: 10.1097/00006123-199709000-00023. [DOI] [PubMed] [Google Scholar]
  15. Gati J. S., Menon R. S., Ugurbil K., Rutt B. K. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med. 1997 Aug;38(2):296–302. doi: 10.1002/mrm.1910380220. [DOI] [PubMed] [Google Scholar]
  16. Hajnal J. V., Myers R., Oatridge A., Schwieso J. E., Young I. R., Bydder G. M. Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med. 1994 Mar;31(3):283–291. doi: 10.1002/mrm.1910310307. [DOI] [PubMed] [Google Scholar]
  17. Jack C. R., Jr, Thompson R. M., Butts R. K., Sharbrough F. W., Kelly P. J., Hanson D. P., Riederer S. J., Ehman R. L., Hangiandreou N. J., Cascino G. D. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology. 1994 Jan;190(1):85–92. doi: 10.1148/radiology.190.1.8259434. [DOI] [PubMed] [Google Scholar]
  18. Kim S. G., Hendrich K., Hu X., Merkle H., Uğurbil K. Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques. NMR Biomed. 1994 Mar;7(1-2):69–74. doi: 10.1002/nbm.1940070111. [DOI] [PubMed] [Google Scholar]
  19. Krings T., Buchbinder B. R., Butler W. E., Chiappa K. H., Jiang H. J., Rosen B. R., Cosgrove G. R. Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery. 1997 Dec;41(6):1319–1326. doi: 10.1097/00006123-199712000-00016. [DOI] [PubMed] [Google Scholar]
  20. Krings T., Chiappa K. H., Cuffin B. N., Buchbinder B. R., Cosgrove G. R. Accuracy of electroencephalographic dipole localization of epileptiform activities associated with focal brain lesions. Ann Neurol. 1998 Jul;44(1):76–86. doi: 10.1002/ana.410440114. [DOI] [PubMed] [Google Scholar]
  21. Krings T., Erberich S. G., Roessler F., Reul J., Thron A. MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol. 1999 Nov-Dec;20(10):1907–1914. [PMC free article] [PubMed] [Google Scholar]
  22. Krings T., Reul J., Spetzger U., Klusmann A., Roessler F., Gilsbach J. M., Thron A. Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien) 1998;140(3):215–222. doi: 10.1007/s007010050088. [DOI] [PubMed] [Google Scholar]
  23. Kwong K. K. Functional magnetic resonance imaging with echo planar imaging. Magn Reson Q. 1995 Mar;11(1):1–20. [PubMed] [Google Scholar]
  24. Lai S., Hopkins A. L., Haacke E. M., Li D., Wasserman B. A., Buckley P., Friedman L., Meltzer H., Hedera P., Friedland R. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med. 1993 Sep;30(3):387–392. doi: 10.1002/mrm.1910300318. [DOI] [PubMed] [Google Scholar]
  25. Lee A. T., Glover G. H., Meyer C. H. Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med. 1995 Jun;33(6):745–754. doi: 10.1002/mrm.1910330602. [DOI] [PubMed] [Google Scholar]
  26. Lee C. C., Ward H. A., Sharbrough F. W., Meyer F. B., Marsh W. R., Raffel C., So E. L., Cascino G. D., Shin C., Xu Y. Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999 Sep;20(8):1511–1519. [PMC free article] [PubMed] [Google Scholar]
  27. Malonek D., Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996 Apr 26;272(5261):551–554. doi: 10.1126/science.272.5261.551. [DOI] [PubMed] [Google Scholar]
  28. Nitschke M. F., Melchert U. H., Hahn C., Otto V., Arnold H., Herrmann H. D., Nowak G., Westphal M., Wessel K. Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir (Wien) 1998;140(12):1223–1229. doi: 10.1007/s007010050242. [DOI] [PubMed] [Google Scholar]
  29. Pawlik G., Rackl A., Bing R. J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res. 1981 Mar 9;208(1):35–58. doi: 10.1016/0006-8993(81)90619-3. [DOI] [PubMed] [Google Scholar]
  30. Puce A., Constable R. T., Luby M. L., McCarthy G., Nobre A. C., Spencer D. D., Gore J. C., Allison T. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995 Aug;83(2):262–270. doi: 10.3171/jns.1995.83.2.0262. [DOI] [PubMed] [Google Scholar]
  31. Pujol J., Conesa G., Deus J., López-Obarrio L., Isamat F., Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998 May;88(5):863–869. doi: 10.3171/jns.1998.88.5.0863. [DOI] [PubMed] [Google Scholar]
  32. Roux F. E., Ranjeva J. P., Boulanouar K., Manelfe C., Sabatier J., Tremoulet M., Berry I. Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotact Funct Neurosurg. 1997;68(1-4):106–111. doi: 10.1159/000099910. [DOI] [PubMed] [Google Scholar]
  33. Schulder M., Maldjian J. A., Liu W. C., Holodny A. I., Kalnin A. T., Mun I. K., Carmel P. W. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998 Sep;89(3):412–418. doi: 10.3171/jns.1998.89.3.0412. [DOI] [PubMed] [Google Scholar]
  34. Stapleton S. R., Kiriakopoulos E., Mikulis D., Drake J. M., Hoffman H. J., Humphreys R., Hwang P., Otsubo H., Holowka S., Logan W. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997 Feb;26(2):68–82. doi: 10.1159/000121167. [DOI] [PubMed] [Google Scholar]
  35. Strother S. C., Anderson J. R., Xu X. L., Liow J. S., Bonar D. C., Rottenberg D. A. Quantitative comparisons of image registration techniques based on high-resolution MRI of the brain. J Comput Assist Tomogr. 1994 Nov-Dec;18(6):954–962. doi: 10.1097/00004728-199411000-00021. [DOI] [PubMed] [Google Scholar]
  36. Weisskoff R. M., Zuo C. S., Boxerman J. L., Rosen B. R. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med. 1994 Jun;31(6):601–610. doi: 10.1002/mrm.1910310605. [DOI] [PubMed] [Google Scholar]
  37. Wildförster U., Falk A., Harders A. Operative approach due to results of functional magnetic resonance imaging in central brain tumors. Comput Aided Surg. 1998;3(4):162–165. doi: 10.1002/(SICI)1097-0150(1998)3:4<162::AID-IGS5>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  38. Woods R. P., Cherry S. R., Mazziotta J. C. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr. 1992 Jul-Aug;16(4):620–633. doi: 10.1097/00004728-199207000-00024. [DOI] [PubMed] [Google Scholar]
  39. Yousry T. A., Schmid U. D., Alkadhi H., Schmidt D., Peraud A., Buettner A., Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997 Jan;120(Pt 1):141–157. doi: 10.1093/brain/120.1.141. [DOI] [PubMed] [Google Scholar]
  40. Yousry T. A., Schmid U. D., Schmidt D., Hagen T., Jassoy A., Reiser M. F. The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg. 1996 Oct;85(4):608–617. doi: 10.3171/jns.1996.85.4.0608. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES