Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2001 Jul;71(1):23–28. doi: 10.1136/jnnp.71.1.23

Structural MRI volumetric analysis in patients with organic amnesia, 2: correlations with anterograde memory and executive tests in 40 patients

M Kopelman 1, D Lasserson 1, D Kingsley 1, F Bello 1, C Rush 1, N Stanhope 1, T Stevens 1, G Goodman 1, G Heilpern 1, B Kendall 1, A Colchester 1
PMCID: PMC1737465  PMID: 11413257

Abstract

BACKGROUND—Cognitive-MRI correlations have often been studied in disorders in which there are multiple cognitive deficits and widespread cortical atrophy, such as Alzheimer's dementia. In such circumstances, the interpretation of any single cognitive-structural correlation is equivocal. Only by measuring differing cognitive functions and a wide range of brain structures in patients with a varying distribution of lesions or atrophy can specific brain-cognitive relations be determined in neurological disorder.
METHOD—In the present study, a clear set of anatomical criteria and detailed MRI segmentation procedures were applied to measure whole brain, and left and right frontal, temporal lobe, anterolateral and medial temporal volumes, as well as thalamic cross sectional areas in 40 patients with organic amnesia (from various diseases) and 10 healthy controls.
RESULTS—Within the total patient group, anterograde memory measures correlated significantly with medial temporal, hippocampal, and thalamic measurements. A spatial memory measure correlated significantly with hippocampal volume, and temporal context memory with frontal volume. After a factor analysis of the cognitive measures, the association between anterograde memory and hippocampal volume was corroborated. Forgetting rates and subjective memory evaluations did not show any significant MR correlations and, of executive tests employed, only card sorting categories correlated significantly with frontal volume.
CONCLUSION—Loss of volume in key brain structures (for example, hippocampus, thalamus) is detectable on quantitative MRI, and this loss of volume correlates significantly with impaired performance on measures of anterograde memory function. Correlations with hippocampal volume did not indicate a specific role in either recall or verbal memory, as opposed to recognition or visual memory.



Full Text

The Full Text of this article is available as a PDF (185.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggleton J. P., Saunders R. C. The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory. 1997 Jan-Mar;5(1-2):49–71. doi: 10.1080/741941143. [DOI] [PubMed] [Google Scholar]
  2. Aggleton J. P., Shaw C. Amnesia and recognition memory: a re-analysis of psychometric data. Neuropsychologia. 1996 Jan;34(1):51–62. doi: 10.1016/0028-3932(95)00150-6. [DOI] [PubMed] [Google Scholar]
  3. Baxendale S. A., Thompson P. J., Van Paesschen W. A test of spatial memory and its clinical utility in the pre-surgical investigation of temporal lobe epilepsy patients. Neuropsychologia. 1998 Jul;36(7):591–602. doi: 10.1016/s0028-3932(97)00163-2. [DOI] [PubMed] [Google Scholar]
  4. Cahn D. A., Sullivan E. V., Shear P. K., Marsh L., Fama R., Lim K. O., Yesavage J. A., Tinklenberg J. R., Pfefferbaum A. Structural MRI correlates of recognition memory in Alzheimer's disease. J Int Neuropsychol Soc. 1998 Mar;4(2):106–114. doi: 10.1017/s1355617798001064. [DOI] [PubMed] [Google Scholar]
  5. Chalfonte B. L., Verfaellie M., Johnson M. K., Reiss L. Spatial location memory in amnesia: binding item and location information under incidental and intentional encoding conditions. Memory. 1996 Nov;4(6):591–614. doi: 10.1080/741940998. [DOI] [PubMed] [Google Scholar]
  6. Colchester A., Kingsley D., Lasserson D., Kendall B., Bello F., Rush C., Stevens T. G., Goodman G., Heilpern G., Stanhope N. Structural MRI volumetric analysis in patients with organic amnesia, 1: methods and comparative findings across diagnostic groups. J Neurol Neurosurg Psychiatry. 2001 Jul;71(1):13–22. doi: 10.1136/jnnp.71.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deweer B., Lehéricy S., Pillon B., Baulac M., Chiras J., Marsault C., Agid Y., Dubois B. Memory disorders in probable Alzheimer's disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry. 1995 May;58(5):590–597. doi: 10.1136/jnnp.58.5.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fama R., Sullivan E. V., Shear P. K., Marsh L., Yesavage J. A., Tinklenberg J. R., Lim K. O., Pfefferbaum A. Selective cortical and hippocampal volume correlates of Mattis Dementia Rating Scale in Alzheimer disease. Arch Neurol. 1997 Jun;54(6):719–728. doi: 10.1001/archneur.1997.00550180039010. [DOI] [PubMed] [Google Scholar]
  9. Fazio F., Perani D., Gilardi M. C., Colombo F., Cappa S. F., Vallar G., Bettinardi V., Paulesu E., Alberoni M., Bressi S. Metabolic impairment in human amnesia: a PET study of memory networks. J Cereb Blood Flow Metab. 1992 May;12(3):353–358. doi: 10.1038/jcbfm.1992.52. [DOI] [PubMed] [Google Scholar]
  10. Golomb J., Kluger A., de Leon M. J., Ferris S. H., Convit A., Mittelman M. S., Cohen J., Rusinek H., De Santi S., George A. E. Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn Mem. 1994 May-Jun;1(1):45–54. [PubMed] [Google Scholar]
  11. Grasby P. M., Frith C. D., Friston K. J., Bench C., Frackowiak R. S., Dolan R. J. Functional mapping of brain areas implicated in auditory--verbal memory function. Brain. 1993 Feb;116(Pt 1):1–20. doi: 10.1093/brain/116.1.1. [DOI] [PubMed] [Google Scholar]
  12. Guinan E. M., Lowy C., Stanhope N., Lewis P. D., Kopelman M. D. Cognitive effects of pituitary tumours and their treatments: two case studies and an investigation of 90 patients. J Neurol Neurosurg Psychiatry. 1998 Dec;65(6):870–876. doi: 10.1136/jnnp.65.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heilman K. M., Bowers D., Watson R. T., Day A., Valenstein E., Hammond E., Duara R. Frontal hypermetabolism and thalamic hypometabolism in a patient with abnormal orienting and retrosplenial amnesia. Neuropsychologia. 1990;28(2):161–169. doi: 10.1016/0028-3932(90)90098-9. [DOI] [PubMed] [Google Scholar]
  14. Jack C. R., Jr, Twomey C. K., Zinsmeister A. R., Sharbrough F. W., Petersen R. C., Cascino G. D. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology. 1989 Aug;172(2):549–554. doi: 10.1148/radiology.172.2.2748838. [DOI] [PubMed] [Google Scholar]
  15. Kartsounis L. D., Poynton A., Bridges P. K., Bartlett J. R. Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain. 1991 Dec;114(Pt 6):2657–2673. doi: 10.1093/brain/114.6.2657. [DOI] [PubMed] [Google Scholar]
  16. Kopelman M. D. Remote and autobiographical memory, temporal context memory and frontal atrophy in Korsakoff and Alzheimer patients. Neuropsychologia. 1989;27(4):437–460. doi: 10.1016/0028-3932(89)90050-x. [DOI] [PubMed] [Google Scholar]
  17. Kopelman M. D., Stanhope N., Guinan E. Subjective memory evaluations in patients with focal frontal, diencephalic, and temporal lobe lesion. Cortex. 1998 Apr;34(2):191–207. doi: 10.1016/s0010-9452(08)70747-0. [DOI] [PubMed] [Google Scholar]
  18. Kopelman M. D., Stanhope N., Kingsley D. Temporal and spatial context memory in patients with focal frontal, temporal lobe, and diencephalic lesions. Neuropsychologia. 1997 Dec;35(12):1533–1545. doi: 10.1016/s0028-3932(97)00076-6. [DOI] [PubMed] [Google Scholar]
  19. Kopelman M. D., Stanhope N. Rates of forgetting in organic amnesia following temporal lobe, diencephalic, or frontal lobe lesions. Neuropsychology. 1997 Jul;11(3):343–356. doi: 10.1037//0894-4105.11.3.343. [DOI] [PubMed] [Google Scholar]
  20. Kopelman M. D., Stanhope N. Recall and recognition memory in patients with focal frontal, temporal lobe and diencephalic lesions. Neuropsychologia. 1998 Aug;36(8):785–795. doi: 10.1016/s0028-3932(97)00167-x. [DOI] [PubMed] [Google Scholar]
  21. Kopelman M. D., Stevens T. G., Foli S., Grasby P. PET activation of the medial temporal lobe in learning. Brain. 1998 May;121(Pt 5):875–887. doi: 10.1093/brain/121.5.875. [DOI] [PubMed] [Google Scholar]
  22. Köhler S., Black S. E., Sinden M., Szekely C., Kidron D., Parker J. L., Foster J. K., Moscovitch M., Winocour G., Szalai J. P. Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer's disease. Neuropsychologia. 1998 Sep;36(9):901–914. doi: 10.1016/s0028-3932(98)00017-7. [DOI] [PubMed] [Google Scholar]
  23. Laakso M. P., Partanen K., Riekkinen P., Lehtovirta M., Helkala E. L., Hallikainen M., Hanninen T., Vainio P., Soininen H. Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia: An MRI study. Neurology. 1996 Mar;46(3):678–681. doi: 10.1212/wnl.46.3.678. [DOI] [PubMed] [Google Scholar]
  24. Mayes A. R., Downes J. J. What do theories of the functional deficit(s) underlying amnesia have to explain? Memory. 1997 Jan-Mar;5(1-2):3–36. doi: 10.1080/741941147. [DOI] [PubMed] [Google Scholar]
  25. Montaldi D., Mayes A. R., Barnes A., Pirie H., Hadley D. M., Patterson J., Wyper D. J. Associative encoding of pictures activates the medial temporal lobes. Hum Brain Mapp. 1998;6(2):85–104. doi: 10.1002/(SICI)1097-0193(1998)6:2<85::AID-HBM2>3.0.CO;2-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mori E., Yoneda Y., Yamashita H., Hirono N., Ikeda M., Yamadori A. Medial temporal structures relate to memory impairment in Alzheimer's disease: an MRI volumetric study. J Neurol Neurosurg Psychiatry. 1997 Aug;63(2):214–221. doi: 10.1136/jnnp.63.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nelson H. E. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976 Dec;12(4):313–324. doi: 10.1016/s0010-9452(76)80035-4. [DOI] [PubMed] [Google Scholar]
  28. Parkin A. J., Leng N. R., Hunkin N. M. Differential sensitivity to context in diencephalic and temporal lobe amnesia. Cortex. 1990 Sep;26(3):373–380. doi: 10.1016/s0010-9452(13)80087-1. [DOI] [PubMed] [Google Scholar]
  29. Reed L. J., Marsden P., Lasserson D., Sheldon N., Lewis P., Stanhope N., Guinan E., Kopelman M. D. FDG-PET analysis and findings in amnesia resulting from hypoxia. Memory. 1999 Sep-Nov;7(5-6):599–612. doi: 10.1080/096582199387779. [DOI] [PubMed] [Google Scholar]
  30. Shallice T., Evans M. E. The involvement of the frontal lobes in cognitive estimation. Cortex. 1978 Jun;14(2):294–303. doi: 10.1016/s0010-9452(78)80055-0. [DOI] [PubMed] [Google Scholar]
  31. Shimamura A. P., Janowsky J. S., Squire L. R. Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia. 1990;28(8):803–813. doi: 10.1016/0028-3932(90)90004-8. [DOI] [PubMed] [Google Scholar]
  32. Shoqeirat M. A., Mayes A. R. Disproportionate incidental spatial-memory and recall deficits in amnesia. Neuropsychologia. 1991;29(8):749–769. doi: 10.1016/0028-3932(91)90070-o. [DOI] [PubMed] [Google Scholar]
  33. Tulving E., Kapur S., Craik F. I., Moscovitch M., Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2016–2020. doi: 10.1073/pnas.91.6.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES