Abstract
OBJECTIVE—To investigate the relation between the variation of the parameters of stimulation and the clinical effectiveness in parkinsonian patients treated with deep brain stimulation of the subthalamic nucleus (STN), to provide information on the electrical parameter setting and the mechanism of action of deep brain stimulation. METHODS—Ten patients with Parkinson's disease bilaterally implanted in the STN were studied. For every patient the intensity of the stimulus necessary to obtain the disappearance of contralateral wrist rigidity (required clinical effect, RCE) and the side effect threshold in 20 different conditions of stimulation, coupling four pulse width values (60, 120, 210, 450 µs) with five rate values (10, 50, 90, 130, 170 Hz) were determined. All the patients were tested after a 12 hour withdrawal of antiparkinsonian drugs, and the clinical evaluation was double blind. RESULTS—In all the patients it was impossible to obtain the RCE using 10 and 50 Hz stimulus rates. For all the other stimulus rate values, the intensity-pulse width curves (IPWCs) for the RCE and for the side effect threshold showed a hyperbolic trend. For every pulse width value, increasing the rate from 90 to 130 and to 170Hz progressively decreased the intensity of the stimulus necessary to reach the RCE, but the differences were not significant. Within the same rate value, the progressive reduction of the stimulus intensity necessary to obtain the RCE, obtained with the lengthening of the pulse width was significant (p<0.05) only comparing 60with 210 µs and 60 with 450 µs. CONCLUSIONS—The findings give some useful indications for the electrical parameter setting in deep brain stimulation of the STN, and some information about the mechanism of action of deep brain stimulation.
Full Text
The Full Text of this article is available as a PDF (131.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander G. E., Crutcher M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990 Jul;13(7):266–271. doi: 10.1016/0166-2236(90)90107-l. [DOI] [PubMed] [Google Scholar]
- Ashby P., Kim Y. J., Kumar R., Lang A. E., Lozano A. M. Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain. 1999 Oct;122(Pt 10):1919–1931. doi: 10.1093/brain/122.10.1919. [DOI] [PubMed] [Google Scholar]
- Ashby P., Strafella A., Dostrovsky J. O., Lozano A., Lang A. E. Immediate motor effects of stimulation through electrodes implanted in the human globus pallidus. Stereotact Funct Neurosurg. 1998;70(1):1–18. doi: 10.1159/000029593. [DOI] [PubMed] [Google Scholar]
- Benabid A. L., Benazzouz A., Hoffmann D., Limousin P., Krack P., Pollak P. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13 (Suppl 3):119–125. doi: 10.1002/mds.870131321. [DOI] [PubMed] [Google Scholar]
- Benabid A. L., Pollak P., Gao D., Hoffmann D., Limousin P., Gay E., Payen I., Benazzouz A. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996 Feb;84(2):203–214. doi: 10.3171/jns.1996.84.2.0203. [DOI] [PubMed] [Google Scholar]
- Benazzouz A., Gross C., Féger J., Boraud T., Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993 Apr 1;5(4):382–389. doi: 10.1111/j.1460-9568.1993.tb00505.x. [DOI] [PubMed] [Google Scholar]
- Bergman H., Wichmann T., DeLong M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990 Sep 21;249(4975):1436–1438. doi: 10.1126/science.2402638. [DOI] [PubMed] [Google Scholar]
- Hutchison W. D., Allan R. J., Opitz H., Levy R., Dostrovsky J. O., Lang A. E., Lozano A. M. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol. 1998 Oct;44(4):622–628. doi: 10.1002/ana.410440407. [DOI] [PubMed] [Google Scholar]
- Kumar R., Lozano A. M., Sime E., Halket E., Lang A. E. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology. 1999 Aug 11;53(3):561–566. doi: 10.1212/wnl.53.3.561. [DOI] [PubMed] [Google Scholar]
- Levy R., Hazrati L. N., Herrero M. T., Vila M., Hassani O. K., Mouroux M., Ruberg M., Asensi H., Agid Y., Féger J. Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience. 1997 Jan;76(2):335–343. doi: 10.1016/s0306-4522(96)00409-5. [DOI] [PubMed] [Google Scholar]
- Limousin P., Krack P., Pollak P., Benazzouz A., Ardouin C., Hoffmann D., Benabid A. L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. 1998 Oct 15;339(16):1105–1111. doi: 10.1056/NEJM199810153391603. [DOI] [PubMed] [Google Scholar]
- Limousin P., Pollak P., Benazzouz A., Hoffmann D., Broussolle E., Perret J. E., Benabid A. L. Bilateral subthalamic nucleus stimulation for severe Parkinson's disease. Mov Disord. 1995 Sep;10(5):672–674. doi: 10.1002/mds.870100523. [DOI] [PubMed] [Google Scholar]
- Limousin P., Pollak P., Benazzouz A., Hoffmann D., Le Bas J. F., Broussolle E., Perret J. E., Benabid A. L. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995 Jan 14;345(8942):91–95. doi: 10.1016/s0140-6736(95)90062-4. [DOI] [PubMed] [Google Scholar]
- Limousin P., Pollak P., Hoffmann D., Benazzouz A., Perret J. E., Benabid A. L. Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patients. Mov Disord. 1996 May;11(3):231–235. doi: 10.1002/mds.870110303. [DOI] [PubMed] [Google Scholar]
- Lopiano L., Rizzone M., Bergamasco B., Tavella A., Torre E., Perozzo P., Valentini M. C., Lanotte M. Deep brain stimulation of the subthalamic nucleus: clinical effectiveness and safety. Neurology. 2001 Feb 27;56(4):552–554. doi: 10.1212/wnl.56.4.552. [DOI] [PubMed] [Google Scholar]
- Moro E., Scerrati M., Romito L. M., Roselli R., Tonali P., Albanese A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology. 1999 Jul 13;53(1):85–90. doi: 10.1212/wnl.53.1.85. [DOI] [PubMed] [Google Scholar]
- Nowak L. G., Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res. 1998 Feb;118(4):477–488. doi: 10.1007/s002210050304. [DOI] [PubMed] [Google Scholar]
- Nowak L. G., Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Exp Brain Res. 1998 Feb;118(4):489–500. doi: 10.1007/s002210050305. [DOI] [PubMed] [Google Scholar]
- O'Mara S., Rowe M. J., Tarvin R. P. Neural mechanisms in vibrotactile adaptation. J Neurophysiol. 1988 Feb;59(2):607–622. doi: 10.1152/jn.1988.59.2.607. [DOI] [PubMed] [Google Scholar]
- Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci. 1990 Jul;13(7):254–258. doi: 10.1016/0166-2236(90)90105-j. [DOI] [PubMed] [Google Scholar]
- Ranck J. B., Jr Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975 Nov 21;98(3):417–440. doi: 10.1016/0006-8993(75)90364-9. [DOI] [PubMed] [Google Scholar]
- Tehovnik E. J. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996 Mar;65(1):1–17. doi: 10.1016/0165-0270(95)00131-x. [DOI] [PubMed] [Google Scholar]