Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jan;64(1):326–331. doi: 10.1128/iai.64.1.326-331.1996

Primary structure of the variable region of monoclonal antibody 2B10, capable of inducing anti-idiotypic antibodies that recognize the C-terminal region of MSA-1 of Plasmodium falciparum.

S Su 1, S Yang 1, R Ding 1, E A Davidson 1
PMCID: PMC173763  PMID: 8557359

Abstract

Previously, we reported on the properties of a monoclonal antibody, 2B10, which has the same determinant on the human erythrocyte as MSA-1 of Plasmodium falciparum (FCR3 strain); the binding of both ligands to erythrocyte receptors was totally sialic acid dependent. In this work, rabbit anti-2B10 idiopathic antibodies were generated. The anti-idiotypic antibodies recognized both the erythrocyte binding site of 2B10 and the C-terminal region of MSA-1 (amino acids 1047 to 1640); they were able to inhibit 2B10 and MSA-1 binding to erythrocytes and partially prevent P. falciparum merozoites from invading erythrocytes. The utility of 2B10 in the study of the interaction between MSA-1 and human erythrocytes prompted us to determine the nucleotide and deduced amino acid sequences of its VH and VL regions. The data show that the 2B10 VH region is part of the J558 family and is especially homologous to BALB/c anti-nitrophenyl monoclonal antibody 21.1.43; the VL region belongs to the VK1 subgroup and comes from the same genomic locus as (NZB x W)F1 anti-DNA and C57BL anti-dextran monoclonal antibodies BXW-14 and 42.48.12.2, respectively. Most of the differences among the VH and VL segments are located in CDR1 and -3. The binding site of 2B10 contains both negatively and positively charged amino acid residues. The amino acid sequences of the 2B10 VH region and a region of MSA-1 from the Wellcome strain of P. falciparum (amino acids 1002 to 1115) share 43% similarity, and the amino acid sequences between the 2B10 VL region and another segment of the same MSA-1 (amino acids 1247 to 1394) share 48% similarity. We conclude that the interactions between erythrocyte receptors and their ligands, 2B10 and MSA-1, are related and that the C-terminal region of MSA-1 is the erythrocyte binding domain.

Full Text

The Full Text of this article is available as a PDF (243.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akolkar P. N., Sikder S. K., Bhattacharya S. B., Liao J., Gruezo F., Morrison S. L., Kabat E. A. Different VL and VH germ-line genes are used to produce similar combining sites with specificity for alpha(1----6)dextrans. J Immunol. 1987 Jun 15;138(12):4472–4479. [PubMed] [Google Scholar]
  2. Blackman M. J., Ling I. T., Nicholls S. C., Holder A. A. Proteolytic processing of the Plasmodium falciparum merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains. Mol Biochem Parasitol. 1991 Nov;49(1):29–33. doi: 10.1016/0166-6851(91)90127-r. [DOI] [PubMed] [Google Scholar]
  3. Blackman M. J., Whittle H., Holder A. A. Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol Biochem Parasitol. 1991 Nov;49(1):35–44. doi: 10.1016/0166-6851(91)90128-s. [DOI] [PubMed] [Google Scholar]
  4. Boersch-Supan M. E., Agarwal S., White-Scharf M. E., Imanishi-Kari T. Heavy chain variable region. Multiple gene segments encode anti-4-(hydroxy-3-nitro-phenyl)acetyl idiotypic antibodies. J Exp Med. 1985 Jun 1;161(6):1272–1292. doi: 10.1084/jem.161.6.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur J Immunol. 1984 Oct;14(10):922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
  6. Bruck C., Co M. S., Slaoui M., Gaulton G. N., Smith T., Fields B. N., Mullins J. I., Greene M. I. Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6578–6582. doi: 10.1073/pnas.83.17.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chappel J. A., Holder A. A. Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the first growth factor-like domain of merozoite surface protein-1. Mol Biochem Parasitol. 1993 Aug;60(2):303–311. doi: 10.1016/0166-6851(93)90141-j. [DOI] [PubMed] [Google Scholar]
  8. Cheng H. L., Sood A. K., Ward R. E., Kieber-Emmons T., Kohler H. Structural basis of stimulatory anti-idiotypic antibodies. Mol Immunol. 1988 Jan;25(1):33–40. doi: 10.1016/0161-5890(88)90087-9. [DOI] [PubMed] [Google Scholar]
  9. Claflin J. L., Berry J., Flaherty D., Dunnick W. Somatic evolution of diversity among anti-phosphocholine antibodies induced with Proteus morganii. J Immunol. 1987 May 1;138(9):3060–3068. [PubMed] [Google Scholar]
  10. Cooper J. A. Merozoite surface antigen-I of plasmodium. Parasitol Today. 1993 Feb;9(2):50–54. doi: 10.1016/0169-4758(93)90031-a. [DOI] [PubMed] [Google Scholar]
  11. Farid N. R., Brioñes-Urbina R., Nazrul-Islam M. Biologic activity of anti-thyrotropin anti-idiotypic antibody. J Cell Biochem. 1982;19(4):305–313. doi: 10.1002/jcb.240190402. [DOI] [PubMed] [Google Scholar]
  12. Glasel J. A. Production and properties of antimorphine anti-idiotypic antibodies and their antiopiate receptor activity. Methods Enzymol. 1989;178:222–243. doi: 10.1016/0076-6879(89)78018-6. [DOI] [PubMed] [Google Scholar]
  13. Grzych J. M., Capron M., Lambert P. H., Dissous C., Torres S., Capron A. An anti-idiotype vaccine against experimental schistosomiasis. Nature. 1985 Jul 4;316(6023):74–76. doi: 10.1038/316074a0. [DOI] [PubMed] [Google Scholar]
  14. Holder A. A., Blackman M. J. What is the function of MSP-I on the malaria merozoite? Parasitol Today. 1994 May;10(5):182–184. doi: 10.1016/0169-4758(94)90025-6. [DOI] [PubMed] [Google Scholar]
  15. Holder A. A., Sandhu J. S., Hillman Y., Davey L. S., Nicholls S. C., Cooper H., Lockyer M. J. Processing of the precursor to the major merozoite surface antigens of Plasmodium falciparum. Parasitology. 1987 Apr;94(Pt 2):199–208. doi: 10.1017/s0031182000053889. [DOI] [PubMed] [Google Scholar]
  16. Jerne N. K., Roland J., Cazenave P. A. Recurrent idiotopes and internal images. EMBO J. 1982;1(2):243–247. doi: 10.1002/j.1460-2075.1982.tb01154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  18. Kennedy R. C., Eichberg J. W., Lanford R. E., Dreesman G. R. Anti-idiotypic antibody vaccine for type B viral hepatitis in chimpanzees. Science. 1986 Apr 11;232(4747):220–223. doi: 10.1126/science.3952505. [DOI] [PubMed] [Google Scholar]
  19. Kofler R., Strohal R., Balderas R. S., Johnson M. E., Noonan D. J., Duchosal M. A., Dixon F. J., Theofilopoulos A. N. Immunoglobulin kappa light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. J Clin Invest. 1988 Sep;82(3):852–860. doi: 10.1172/JCI113689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lew A. M., Langford C. J., Anders R. F., Kemp D. J., Saul A., Fardoulys C., Geysen M., Sheppard M. A protective monoclonal antibody recognizes a linear epitope in the precursor to the major merozoite antigens of Plasmodium chabaudi adami. Proc Natl Acad Sci U S A. 1989 May;86(10):3768–3772. doi: 10.1073/pnas.86.10.3768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mazza G., Ollier P., Sommé G., Moinier D., Rocca-Serra J., Van Rietschoten J., Thèze J., Fougereau M. A structural basis for the internal image in the idiotypic network: antibodies against synthetic Ab2-D regions cross-react with the original antigen. Ann Inst Pasteur Immunol. 1985 Nov-Dec;136D(3):259–269. doi: 10.1016/s0769-2625(85)80111-2. [DOI] [PubMed] [Google Scholar]
  22. McBride J. S., Heidrich H. G. Fragments of the polymorphic Mr 185,000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol. 1987 Feb;23(1):71–84. doi: 10.1016/0166-6851(87)90189-7. [DOI] [PubMed] [Google Scholar]
  23. Perkins M. E., Rocco L. J. Sialic acid-dependent binding of Plasmodium falciparum merozoite surface antigen, Pf200, to human erythrocytes. J Immunol. 1988 Nov 1;141(9):3190–3196. [PubMed] [Google Scholar]
  24. Pirson P. J., Perkins M. E. Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. J Immunol. 1985 Mar;134(3):1946–1951. [PubMed] [Google Scholar]
  25. Riley S. C., Connors S. J., Klinman N. R., Ogata R. T. Preferential expression of variable region heavy chain gene segments by predominant 2,4-dinitrophenyl-specific BALB/c neonatal antibody clonotypes. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2589–2593. doi: 10.1073/pnas.83.8.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sege K., Peterson P. A. Use of anti-idiotypic antibodies as cell-surface receptor probes. Proc Natl Acad Sci U S A. 1978 May;75(5):2443–2447. doi: 10.1073/pnas.75.5.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sim B. K., Chitnis C. E., Wasniowska K., Hadley T. J., Miller L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science. 1994 Jun 24;264(5167):1941–1944. doi: 10.1126/science.8009226. [DOI] [PubMed] [Google Scholar]
  28. Sim B. K., Orlandi P. A., Haynes J. D., Klotz F. W., Carter J. M., Camus D., Zegans M. E., Chulay J. D. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol. 1990 Nov;111(5 Pt 1):1877–1884. doi: 10.1083/jcb.111.5.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Su S., Sanadi A. R., Ifon E., Davidson E. A. A monoclonal antibody capable of blocking the binding of Pf200 (MSA-1) to human erythrocytes and inhibiting the invasion of Plasmodium falciparum merozoites into human erythrocytes. J Immunol. 1993 Aug 15;151(4):2309–2317. [PubMed] [Google Scholar]
  30. Su S., Ward M. M., Apicella M. A., Ward R. E. A nontoxic, idiotope vaccine against gram-negative bacterial infections. J Immunol. 1992 Jan 1;148(1):234–238. [PubMed] [Google Scholar]
  31. Tanabe K., Mackay M., Goman M., Scaife J. G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol. 1987 May 20;195(2):273–287. doi: 10.1016/0022-2836(87)90649-8. [DOI] [PubMed] [Google Scholar]
  32. Wassermann N. H., Penn A. S., Freimuth P. I., Treptow N., Wentzel S., Cleveland W. L., Erlanger B. F. Anti-idiotypic route to anti-acetylcholine receptor antibodies and experimental myasthenia gravis. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4810–4814. doi: 10.1073/pnas.79.15.4810. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES