Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2002 Feb;72(2):221–229. doi: 10.1136/jnnp.72.2.221

Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials

J Romstock 1, R Fahlbusch 1, O Ganslandt 1, C Nimsky 1, C Strauss 1
PMCID: PMC1737735  PMID: 11796773

Abstract

Objective: Intraoperative localisation of the sensorimotor cortex using the phase reversal of somatosensory evoked potentials (SEPs) is an essential tool for surgery in and around the perirolandic gyri, but unsuccessful and perplexing results have been reported. This study examines the effect of tumour masses on the waveform characteristics and feasibility of SEP compared with functional neuronavigation and electrical motor cortex mapping.

Methods: In 230 patients with tumours of the sensorimotor region the SEP phase reversal of N20-P20 was recorded from the exposed cortex using a subdural grid or strip electrode. In one subgroup of 80 patients functional neuronavigation was performed with motor and sensory magnetic source imaging and in one subgroup of 40 patients the motor cortex hand area was localised by electrical stimulation mapping.

Results: The intraoperative SEP method was successful in 92% of all patients, it could be shown that the success rate rather depended on the location of the lesion than on preoperative neurological deficits. In 13% of the patients with postcentral tumours no N20-P20 phase reversal was recorded but characteristic polyphasic and high amplitude waves at 25 ms and later made the identification of the postcentral gyrus possible nevertheless. Electrical mapping of the motor cortex took up to 30 minutes until a clear result was obtained. It was successful in 37 patients, but failed in three patients with precentral and central lesions. Functional neuronavigation indicating the tumour margins and the motor and sensory evoked fields was possible in all patients.

Conclusion: The SEP phase reversal of N20-P20 is a simple and reliable technique, but the success rate is much lower in large central and postcentral tumours. With the use of polyphasic late waveforms the sensorimotor cortex may be localised. By contrast with motor electrical mapping it is less time consuming. Functional neuronavigation is a desirable tool for both preoperative surgical planning and intraoperative use during surgery on perirolandic tumours, but compensation for brain shift, accuracy, and cost effectiveness are still a matter for discussion.

Full Text

The Full Text of this article is available as a PDF (352.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba T., Seki Y. Intraoperative identification of the central sulcus: a practical method. Acta Neurochir Suppl (Wien) 1988;42:22–26. doi: 10.1007/978-3-7091-8975-7_5. [DOI] [PubMed] [Google Scholar]
  2. Allison T., McCarthy G., Wood C. C., Jones S. J. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain. 1991 Dec;114(Pt 6):2465–2503. doi: 10.1093/brain/114.6.2465. [DOI] [PubMed] [Google Scholar]
  3. Babu K. S., Chandy M. J. Reliability of somatosensory evoked potentials in intraoperative localization of the central sulcus in patients with perirolandic mass lesions. Br J Neurosurg. 1997 Oct;11(5):411–417. doi: 10.1080/02688699745907. [DOI] [PubMed] [Google Scholar]
  4. Baumgartner C., Barth D. S., Levesque M. F., Sutherling W. W. Functional anatomy of human hand sensorimotor cortex from spatiotemporal analysis of electrocorticography. Electroencephalogr Clin Neurophysiol. 1991 Jan;78(1):56–65. doi: 10.1016/0013-4694(91)90019-z. [DOI] [PubMed] [Google Scholar]
  5. Baumgartner C., Barth D. S., Levesque M. F., Sutherling W. W. Human hand and lip sensorimotor cortex as studied on electrocorticography. Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):115–126. doi: 10.1016/0168-5597(92)90016-5. [DOI] [PubMed] [Google Scholar]
  6. Berger M. S., Cohen W. A., Ojemann G. A. Correlation of motor cortex brain mapping data with magnetic resonance imaging. J Neurosurg. 1990 Mar;72(3):383–387. doi: 10.3171/jns.1990.72.3.0383. [DOI] [PubMed] [Google Scholar]
  7. Bittar R. G., Olivier A., Sadikot A. F., Andermann F., Comeau R. M., Cyr M., Peters T. M., Reutens D. C. Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg. 1999 Mar;90(3):478–483. doi: 10.3171/jns.1999.90.3.0478. [DOI] [PubMed] [Google Scholar]
  8. Bittar R. G., Olivier A., Sadikot A. F., Andermann F., Reutens D. C. Cortical motor and somatosensory representation: effect of cerebral lesions. J Neurosurg. 2000 Feb;92(2):242–248. doi: 10.3171/jns.2000.92.2.0242. [DOI] [PubMed] [Google Scholar]
  9. Boakye M., Huckins S. C., Szeverenyi N. M., Taskey B. I., Hodge C. J., Jr Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger. J Neurosurg. 2000 Nov;93(5):774–783. doi: 10.3171/jns.2000.93.5.0774. [DOI] [PubMed] [Google Scholar]
  10. Cedzich C., Taniguchi M., Schäfer S., Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996 May;38(5):962–970. doi: 10.1097/00006123-199605000-00023. [DOI] [PubMed] [Google Scholar]
  11. Desmedt J. E., Nguyen T. H., Bourguet M. Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephalogr Clin Neurophysiol. 1987 Jan;68(1):1–19. doi: 10.1016/0168-5597(87)90065-7. [DOI] [PubMed] [Google Scholar]
  12. Dinner D. S., Lüders H., Lesser R. P., Morris H. H. Cortical generators of somatosensory evoked potentials to median nerve stimulation. Neurology. 1987 Jul;37(7):1141–1145. doi: 10.1212/wnl.37.7.1141. [DOI] [PubMed] [Google Scholar]
  13. Duffau H. Intraoperative direct subcortical stimulation for identification of the internal capsule, combined with an image-guided stereotactic system during surgery for basal ganglia lesions. Surg Neurol. 2000 Mar;53(3):250–254. doi: 10.1016/s0090-3019(00)00183-x. [DOI] [PubMed] [Google Scholar]
  14. Duffau H., Sichez J. P., Lehéricy S. Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma: evidence using direct cortical stimulation. Ann Neurol. 2000 Jan;47(1):132–135. [PubMed] [Google Scholar]
  15. Ebeling U., Huber P., Reulen H. J. Localization of the precentral gyrus in the computed tomogram and its clinical application. J Neurol. 1986 Apr;233(2):73–76. doi: 10.1007/BF00313850. [DOI] [PubMed] [Google Scholar]
  16. Ebeling U., Schmid U. D., Ying H., Reulen H. J. Safe surgery of lesions near the motor cortex using intra-operative mapping techniques: a report on 50 patients. Acta Neurochir (Wien) 1992;119(1-4):23–28. doi: 10.1007/BF01541777. [DOI] [PubMed] [Google Scholar]
  17. Fried I., Nenov V. I., Ojemann S. G., Woods R. P. Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg. 1995 Nov;83(5):854–861. doi: 10.3171/jns.1995.83.5.0854. [DOI] [PubMed] [Google Scholar]
  18. Ganslandt O., Fahlbusch R., Nimsky C., Kober H., Möller M., Steinmeier R., Romstöck J., Vieth J. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg. 1999 Jul;91(1):73–79. doi: 10.3171/jns.1999.91.1.0073. [DOI] [PubMed] [Google Scholar]
  19. Ganslandt O., Steinmeier R., Kober H., Vieth J., Kassubek J., Romstöck J., Strauss C., Fahlbusch R. Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery. 1997 Sep;41(3):621–628. doi: 10.1097/00006123-199709000-00023. [DOI] [PubMed] [Google Scholar]
  20. Ganslandt O., Ulbricht D., Kober H., Vieth J., Strauss C., Fahlbusch R. SEF-MEG localization of somatosensory cortex as a method for presurgical assessment of functional brain area. Electroencephalogr Clin Neurophysiol Suppl. 1996;46:209–213. [PubMed] [Google Scholar]
  21. Gregorie E. M., Goldring S. Localization of function in the excision of lesions from the sensorimotor region. J Neurosurg. 1984 Dec;61(6):1047–1054. doi: 10.3171/jns.1984.61.6.1047. [DOI] [PubMed] [Google Scholar]
  22. Hayashi N., Nishijo H., Ono T., Endo S., Tabuchi E. Generators of somatosensory evoked potentials investigated by dipole tracing in the monkey. Neuroscience. 1995 Sep;68(2):323–338. doi: 10.1016/0306-4522(95)00126-4. [DOI] [PubMed] [Google Scholar]
  23. Hund M., Rezai A. R., Kronberg E., Cappell J., Zonenshayn M., Ribary U., Kelly P. J., Llinás R. Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery. 1997 May;40(5):936–943. doi: 10.1097/00006123-199705000-00011. [DOI] [PubMed] [Google Scholar]
  24. Inoue T., Shimizu H., Nakasato N., Kumabe T., Yoshimoto T. Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage. 1999 Dec;10(6):738–748. doi: 10.1006/nimg.1999.0501. [DOI] [PubMed] [Google Scholar]
  25. King R. B., Schell G. R. Cortical localization and monitoring during cerebral operations. J Neurosurg. 1987 Aug;67(2):210–219. doi: 10.3171/jns.1987.67.2.0210. [DOI] [PubMed] [Google Scholar]
  26. Kombos T., Pietilä T., Kern B. C., Kopetsch O., Brock M. Demonstration of cerebral plasticity by intra-operative neurophysiological monitoring: report of an uncommon case. Acta Neurochir (Wien) 1999;141(8):885–889. doi: 10.1007/s007010050391. [DOI] [PubMed] [Google Scholar]
  27. Kombos T., Suess O., Funk T., Kern B. C., Brock M. Intra-operative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochir (Wien) 2000;142(3):263–268. doi: 10.1007/s007010050034. [DOI] [PubMed] [Google Scholar]
  28. Lehéricy S., Duffau H., Cornu P., Capelle L., Pidoux B., Carpentier A., Auliac S., Clemenceau S., Sichez J. P., Bitar A. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg. 2000 Apr;92(4):589–598. doi: 10.3171/jns.2000.92.4.0589. [DOI] [PubMed] [Google Scholar]
  29. Lueders H., Lesser R. P., Hahn J., Dinner D. S., Klem G. Cortical somatosensory evoked potentials in response to hand stimulation. J Neurosurg. 1983 Jun;58(6):885–894. doi: 10.3171/jns.1983.58.6.0885. [DOI] [PubMed] [Google Scholar]
  30. Lüders H., Dinner D. S., Lesser R. P., Morris H. H. Evoked potentials in cortical localization. J Clin Neurophysiol. 1986 Jan;3(1):75–84. doi: 10.1097/00004691-198601000-00006. [DOI] [PubMed] [Google Scholar]
  31. Mine S., Oka N., Yamaura A., Nakajima Y. Presurgical functional localization of primary somatosensory cortex by dipole tracing method of scalp-skull-brain head model applied to somatosensory evoked potential. Electroencephalogr Clin Neurophysiol. 1998 Apr;108(3):226–233. doi: 10.1016/s0168-5597(97)00083-x. [DOI] [PubMed] [Google Scholar]
  32. Namiki J., Takase M., Ohira T., Goto K., Ishikawa M., Ajimi Y., Toya S. The neural origin generating early cortical components of SEP: topographical analysis using temporal-second-order-differentiation of cortical SEPs. Brain Topogr. 1996 Spring;8(3):229–232. doi: 10.1007/BF01184774. [DOI] [PubMed] [Google Scholar]
  33. Nii Y., Uematsu S., Lesser R. P., Gordon B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology. 1996 Feb;46(2):360–367. doi: 10.1212/wnl.46.2.360. [DOI] [PubMed] [Google Scholar]
  34. Nimsky C., Ganslandt O., Cerny S., Hastreiter P., Greiner G., Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000 Nov;47(5):1070–1080. doi: 10.1097/00006123-200011000-00008. [DOI] [PubMed] [Google Scholar]
  35. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R. Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery. 1999 Jun;44(6):1249–1256. doi: 10.1097/00006123-199906000-00044. [DOI] [PubMed] [Google Scholar]
  36. Nuwer M. R., Aminoff M., Desmedt J., Eisen A. A., Goodin D., Matsuoka S., Mauguière F., Shibasaki H., Sutherling W., Vibert J. F. IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1994 Jul;91(1):6–11. doi: 10.1016/0013-4694(94)90012-4. [DOI] [PubMed] [Google Scholar]
  37. Nuwer M. R., Banoczi W. R., Cloughesy T. F., Hoch D. B., Peacock W., Levesque M. F., Black K. L., Martin N. A., Becker D. P. Topographic mapping of somatosensory evoked potentials helps identify motor cortex more quickly in the operating room. Brain Topogr. 1992 Fall;5(1):53–58. doi: 10.1007/BF01129970. [DOI] [PubMed] [Google Scholar]
  38. Paleologos T. S., Wadley J. P., Kitchen N. D., Thomas D. G. Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery. 2000 Jul;47(1):40–48. doi: 10.1097/00006123-200007000-00010. [DOI] [PubMed] [Google Scholar]
  39. Pechstein U., Cedzich C., Nadstawek J., Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996 Aug;39(2):335–344. doi: 10.1097/00006123-199608000-00020. [DOI] [PubMed] [Google Scholar]
  40. Puce A. Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol. 1995 Sep;12(5):450–459. doi: 10.1097/00004691-199509010-00004. [DOI] [PubMed] [Google Scholar]
  41. Puce A., Constable R. T., Luby M. L., McCarthy G., Nobre A. C., Spencer D. D., Gore J. C., Allison T. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995 Aug;83(2):262–270. doi: 10.3171/jns.1995.83.2.0262. [DOI] [PubMed] [Google Scholar]
  42. Rezai A. R., Hund M., Kronberg E., Zonenshayn M., Cappell J., Ribary U., Kall B., Llinás R., Kelly P. J. The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery. 1996 Jul;39(1):92–102. doi: 10.1097/00006123-199607000-00018. [DOI] [PubMed] [Google Scholar]
  43. Roux F. E., Boulanouar K., Ibarrola D., Tremoulet M., Chollet F., Berry I. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry. 2000 Oct;69(4):453–463. doi: 10.1136/jnnp.69.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Seitz R. J., Huang Y., Knorr U., Tellmann L., Herzog H., Freund H. J. Large-scale plasticity of the human motor cortex. Neuroreport. 1995 Mar 27;6(5):742–744. doi: 10.1097/00001756-199503270-00009. [DOI] [PubMed] [Google Scholar]
  45. Sonoo M., Shimpo T., Takeda K., Genba K., Nakano I., Mannen T. SEPs in two patients with localized lesions of the postcentral gyrus. Electroencephalogr Clin Neurophysiol. 1991 Nov-Dec;80(6):536–546. doi: 10.1016/0168-5597(91)90136-l. [DOI] [PubMed] [Google Scholar]
  46. Suzuki A., Yasui N. Intraoperative localization of the central sulcus by cortical somatosensory evoked potentials in brain tumor. Case report. J Neurosurg. 1992 May;76(5):867–870. doi: 10.3171/jns.1992.76.5.0867. [DOI] [PubMed] [Google Scholar]
  47. Uematsu S., Lesser R. P., Gordon B. Localization of sensorimotor cortex: the influence of Sherrington and Cushing on the modern concept. Neurosurgery. 1992 Jun;30(6):904–913. doi: 10.1227/00006123-199206000-00015. [DOI] [PubMed] [Google Scholar]
  48. Uematsu S., Lesser R., Fisher R. S., Gordon B., Hara K., Krauss G. L., Vining E. P., Webber R. W. Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery. 1992 Jul;31(1):59–72. doi: 10.1227/00006123-199207000-00009. [DOI] [PubMed] [Google Scholar]
  49. Wirtz C. R., Albert F. K., Schwaderer M., Heuer C., Staubert A., Tronnier V. M., Knauth M., Kunze S. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res. 2000 Jun;22(4):354–360. doi: 10.1080/01616412.2000.11740684. [DOI] [PubMed] [Google Scholar]
  50. Wood C. C., Spencer D. D., Allison T., McCarthy G., Williamson P. D., Goff W. R. Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg. 1988 Jan;68(1):99–111. doi: 10.3171/jns.1988.68.1.0099. [DOI] [PubMed] [Google Scholar]
  51. Woolsey C. N., Erickson T. C., Gilson W. E. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg. 1979 Oct;51(4):476–506. doi: 10.3171/jns.1979.51.4.0476. [DOI] [PubMed] [Google Scholar]
  52. Wunderlich G., Knorr U., Herzog H., Kiwit J. C., Freund H. J., Seitz R. J. Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery. 1998 Jan;42(1):18–27. doi: 10.1097/00006123-199801000-00005. [DOI] [PubMed] [Google Scholar]
  53. Yingling C. D., Ojemann S., Dodson B., Harrington M. J., Berger M. S. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999 Dec;91(6):922–927. doi: 10.3171/jns.1999.91.6.0922. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES