Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2002 Mar;72(3):329–333. doi: 10.1136/jnnp.72.3.329

Evidence of thalamic disinhibition in patients with hemichorea: semiquantitative analysis using SPECT

J Kim 1, K Lee 1, K Lee 1, Y Kim 1, B Kim 1, Y Chung 1, S Chung 1
PMCID: PMC1737786  PMID: 11861689

Abstract

Objectives: Hemichorea sometimes occurs after lesions that selectively involve the caudate nucleus, putamen, and globus pallidus. Some reports have hypothesised that the loss of subthalamic nucleus control on the internal segment of the globus pallidus, followed by the disinhibition of the thalamus may contribute to chorea. However, the pathophysiology is poorly understood. Therefore, clinicoradiological localisation was evaluated and a comparison of the haemodynamic status of the basal ganglia and thalamus was made.

Methods: Six patients presenting with acute onset of hemichorea were assessed. Neuroimaging studies, including MRI and SPECT examinations in addition to detailed biochemical tests, were performed. A semiquantitative analysis was performed by comparing the ratio of blood flow between patients and normal controls. In addition, the ratio of perfusion asymmetry was calculated as the ratio between each area contralateral to the chorea and that homolateral to the chorea. The comparison was made with a two sample t test.

Results: The causes of hemichorea found consisted of four cases of acute stroke, one non-ketotic hyperglycaemia, and one systemic lupus erythematosus. Brain MRI indicated lesion sites in the contralateral putamen, globus pallidus, caudate nucleus, and subthalamic nucleus. A significant decrease in the ratio of blood flow in the basal ganglia contralateral to the chorea and a significant increase in the thalamus was found when comparing the perfusion asymmetries, which were calculated as the ratio of cerebral blood flow (CBF) for each region to that in the homolateral occipital area (p<0.05).

Conclusion: An alteration in CBF in both the contralateral thalamus and basal ganglia reflect the loss of pallidal inhibitory input from the pallidum to the thalamus. This change in CBF may be one of epiphenomena, which implicates an occurrence of hemichorea in humans.

Full Text

The Full Text of this article is available as a PDF (141.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergman H., Wichmann T., DeLong M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990 Sep 21;249(4975):1436–1438. doi: 10.1126/science.2402638. [DOI] [PubMed] [Google Scholar]
  2. CARPENTER M. B., WHITTIER J. R., METTLER F. A. Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J Comp Neurol. 1950 Jun;92(3):293–331. doi: 10.1002/cne.900920303. [DOI] [PubMed] [Google Scholar]
  3. Chang M. H., Li J. Y., Lee S. R., Men C. Y. Non-ketotic hyperglycaemic chorea: a SPECT study. J Neurol Neurosurg Psychiatry. 1996 Apr;60(4):428–430. doi: 10.1136/jnnp.60.4.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crossman A. R., Mitchell I. J., Sambrook M. A., Jackson A. Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex. The site of drug action and a hypothesis for the neural mechanisms of chorea. Brain. 1988 Oct;111(Pt 5):1211–1233. doi: 10.1093/brain/111.5.1211. [DOI] [PubMed] [Google Scholar]
  5. Crossman A. R., Sambrook M. A., Jackson A. Experimental hemichorea/hemiballismus in the monkey. Studies on the intracerebral site of action in a drug-induced dyskinesia. Brain. 1984 Jun;107(Pt 2):579–596. doi: 10.1093/brain/107.2.579. [DOI] [PubMed] [Google Scholar]
  6. DeLong M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990 Jul;13(7):281–285. doi: 10.1016/0166-2236(90)90110-v. [DOI] [PubMed] [Google Scholar]
  7. Dewey R. B., Jr, Jankovic J. Hemiballism-hemichorea. Clinical and pharmacologic findings in 21 patients. Arch Neurol. 1989 Aug;46(8):862–867. doi: 10.1001/archneur.1989.00520440044020. [DOI] [PubMed] [Google Scholar]
  8. Filion M., Tremblay L., Bédard P. J. Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res. 1988 Mar 15;444(1):165–176. doi: 10.1016/0006-8993(88)90924-9. [DOI] [PubMed] [Google Scholar]
  9. HYLAND H. H., FORMAN D. M. Prognosis in hemiballismus. Neurology. 1957 Jun;7(6):381–391. doi: 10.1212/wnl.7.6.381. [DOI] [PubMed] [Google Scholar]
  10. Hamada I., DeLong M. R. Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J Neurophysiol. 1992 Nov;68(5):1859–1866. doi: 10.1152/jn.1992.68.5.1859. [DOI] [PubMed] [Google Scholar]
  11. Hosokawa S., Ichiya Y., Kuwabara Y., Ayabe Z., Mitsuo K., Goto I., Kato M. Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry. 1987 Oct;50(10):1284–1287. doi: 10.1136/jnnp.50.10.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kase C. S., Maulsby G. O., deJuan E., Mohr J. P. Hemichorea-hemiballism and lacunar infarction in the basal ganglia. Neurology. 1981 Apr;31(4):452–455. doi: 10.1212/wnl.31.4.452. [DOI] [PubMed] [Google Scholar]
  13. Kuhl D. E., Phelps M. E., Markham C. H., Metter E. J., Riege W. H., Winter J. Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982 Nov;12(5):425–434. doi: 10.1002/ana.410120504. [DOI] [PubMed] [Google Scholar]
  14. Kuwert T., Lange H. W., Langen K. J., Herzog H., Aulich A., Feinendegen L. E. Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain. 1990 Oct;113(Pt 5):1405–1423. doi: 10.1093/brain/113.5.1405. [DOI] [PubMed] [Google Scholar]
  15. Laitinen L. V., Bergenheim A. T., Hariz M. I. Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg. 1992 Jan;76(1):53–61. doi: 10.3171/jns.1992.76.1.0053. [DOI] [PubMed] [Google Scholar]
  16. Miller W. C., DeLong M. R. Parkinsonian symptomatology. An anatomical and physiological analysis. Ann N Y Acad Sci. 1988;515:287–302. doi: 10.1111/j.1749-6632.1988.tb32998.x. [DOI] [PubMed] [Google Scholar]
  17. Mink J. W., Thach W. T. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. J Neurophysiol. 1991 Feb;65(2):330–351. doi: 10.1152/jn.1991.65.2.330. [DOI] [PubMed] [Google Scholar]
  18. Ohye C., Le Gayader C., Feger J. Responses of subthalamic and pallidal neurons to striatal stimulation: an extracellular study on awake monkeys. Brain Res. 1976 Jul 30;111(2):241–252. doi: 10.1016/0006-8993(76)90769-1. [DOI] [PubMed] [Google Scholar]
  19. Pantano P., Di Cesare S., Ricci M., Gualdi G. F., Sabatini U., Di Piero V. Hemichorea after a striatal ischemic lesion: evidence of thalamic disinhibition using single-photon emission computed tomography: a case report. Mov Disord. 1996 Jul;11(4):444–447. doi: 10.1002/mds.870110417. [DOI] [PubMed] [Google Scholar]
  20. Raichle M. E., Grubb R. L., Jr, Gado M. H., Eichling J. O., Ter-Pogossian M. M. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol. 1976 Aug;33(8):523–526. doi: 10.1001/archneur.1976.00500080001001. [DOI] [PubMed] [Google Scholar]
  21. Shan D. E., Ho D. M., Chang C., Pan H. C., Teng M. M. Hemichorea-hemiballism: an explanation for MR signal changes. AJNR Am J Neuroradiol. 1998 May;19(5):863–870. [PMC free article] [PubMed] [Google Scholar]
  22. Sharp P. F., Smith F. W., Gemmell H. G., Lyall D., Evans N. T., Gvozdanovic D., Davidson J., Tyrrell D. A., Pickett R. D., Neirinckx R. D. Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986 Feb;27(2):171–177. [PubMed] [Google Scholar]
  23. Steriade M., Llinás R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988 Jul;68(3):649–742. doi: 10.1152/physrev.1988.68.3.649. [DOI] [PubMed] [Google Scholar]
  24. Weeks R. A., Ceballos-Baumann A., Piccini P., Boecker H., Harding A. E., Brooks D. J. Cortical control of movement in Huntington's disease. A PET activation study. Brain. 1997 Sep;120(Pt 9):1569–1578. doi: 10.1093/brain/120.9.1569. [DOI] [PubMed] [Google Scholar]
  25. Young A. B., Penney J. B., Starosta-Rubinstein S., Markel D. S., Berent S., Giordani B., Ehrenkaufer R., Jewett D., Hichwa R. PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986 Sep;20(3):296–303. doi: 10.1002/ana.410200305. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES