Abstract
Objective: To define the chemokine profile in the CSF of patients with multiple sclerosis (MS) and compare it with three control groups; patients with benign headache (headache), non-inflammatory neurological diseases (NIND), and other inflammatory neurological diseases (IND). In addition, the correlations of CSF chemokine concentrations with chemokine receptor expression on CSF CD4+ T cells and with clinical disease activity were assessed.
Methods: Forty three patients with MS, 24 with IND, 44 with NIND, and 12 with benign headache undergoing diagnostic or therapeutic lumbar puncture were included. Supernatant fluid from CSF was analysed for four ß (CCL2, CCL3, CCL4, CCL5) and two α (CXCL9, CXCL10)chemokines by enzyme linked immunosorbent assay (ELISA). Chemokine receptors CCR3, CCR5, and CXCR3 on CD4+ T cells from eight patients with MS were analysed using directly conjugated fluorescent labelled monoclonal antibodies and flow cytometry.
Results: CXCL10, formerly interferon-γ inducible protein-10 (IP-10), was significantly increased and CCL2, formerly monocyte chemoattractant protein-1 (MCP-1), was significantly reduced in the CSF of patients with MS and IND compared with those with benign headache and NIND. Concentrations of CXCL10 were significantly greater in patients with relapsing-remitting compared with secondary progressive MS and correlated significantly with CXCR3 expression on CSF CD4+ T cells from patients with MS. Concentrations of CXCL10 decreased and CCL2 concentrations increased as time from the last relapse increased in patients with MS.
Conclusion: Increased CXCL10 and decreased CCL2 concentrations in the CSF are associated with relapses in MS. Although serial values from individual patients were not available, this study suggests that CXCL10 and CCL2 may return towards baseline concentrations after a relapse. Correlation of CXCL10 with CD4+ T cell expression of CXCR3 was consistent with its chemoattractant role for activated lymphocytes. Thus CXCL10 neutralising agents and CXCR3 receptor antagonists may be therapeutic targets in MS.
Full Text
The Full Text of this article is available as a PDF (100.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balashov K. E., Rottman J. B., Weiner H. L., Hancock W. W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6873–6878. doi: 10.1073/pnas.96.12.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calabresi P. A., Martin R., Jacobson S. Chemokines in chronic progressive neurological diseases: HTLV-1 associated myelopathy and multiple sclerosis. J Neurovirol. 1999 Feb;5(1):102–108. doi: 10.3109/13550289909029751. [DOI] [PubMed] [Google Scholar]
- Confalonieri P., Bernasconi P., Megna P., Galbiati S., Cornelio F., Mantegazza R. Increased expression of beta-chemokines in muscle of patients with inflammatory myopathies. J Neuropathol Exp Neurol. 2000 Feb;59(2):164–169. doi: 10.1093/jnen/59.2.164. [DOI] [PubMed] [Google Scholar]
- Franciotta D., Martino G., Zardini E., Furlan R., Bergamaschi R., Andreoni L., Cosi V. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol. 2001 Apr 2;115(1-2):192–198. doi: 10.1016/s0165-5728(01)00261-2. [DOI] [PubMed] [Google Scholar]
- Fuentes M. E., Durham S. K., Swerdel M. R., Lewin A. C., Barton D. S., Megill J. R., Bravo R., Lira S. A. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol. 1995 Dec 15;155(12):5769–5776. [PubMed] [Google Scholar]
- Gangur V., Simons F. E., Hayglass K. T. Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses. FASEB J. 1998 Jun;12(9):705–713. doi: 10.1096/fasebj.12.9.705. [DOI] [PubMed] [Google Scholar]
- Grossman R. I., Gonzalez-Scarano F., Atlas S. W., Galetta S., Silberberg D. H. Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology. 1986 Dec;161(3):721–725. doi: 10.1148/radiology.161.3.3786722. [DOI] [PubMed] [Google Scholar]
- Gu L., Tseng S., Horner R. M., Tam C., Loda M., Rollins B. J. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000 Mar 23;404(6776):407–411. doi: 10.1038/35006097. [DOI] [PubMed] [Google Scholar]
- Karpus W. J., Kennedy K. J. MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol. 1997 Nov;62(5):681–687. [PubMed] [Google Scholar]
- Karpus W. J., Kennedy K. J. MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol. 1997 Nov;62(5):681–687. [PubMed] [Google Scholar]
- Kidd D., Thorpe J. W., Kendall B. E., Barker G. J., Miller D. H., McDonald W. I., Thompson A. J. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996 Jan;60(1):15–19. doi: 10.1136/jnnp.60.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahrtz F., Piali L., Spanaus K. S., Seebach J., Fontana A. Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol. 1998 May 1;85(1):33–43. doi: 10.1016/s0165-5728(97)00267-1. [DOI] [PubMed] [Google Scholar]
- Mackay C. R. Chemokines: immunology's high impact factors. Nat Immunol. 2001 Feb;2(2):95–101. doi: 10.1038/84298. [DOI] [PubMed] [Google Scholar]
- McManus C., Berman J. W., Brett F. M., Staunton H., Farrell M., Brosnan C. F. MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol. 1998 Jun 1;86(1):20–29. doi: 10.1016/s0165-5728(98)00002-2. [DOI] [PubMed] [Google Scholar]
- Miller R. J., Meucci O. AIDS and the brain: is there a chemokine connection? Trends Neurosci. 1999 Oct;22(10):471–479. doi: 10.1016/s0166-2236(99)01408-3. [DOI] [PubMed] [Google Scholar]
- Miyagishi R., Kikuchi S., Fukazawa T., Tashiro K. Macrophage inflammatory protein-1 alpha in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J Neurol Sci. 1995 Apr;129(2):223–227. doi: 10.1016/0022-510x(95)00004-l. [DOI] [PubMed] [Google Scholar]
- Moser B., Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol. 2001 Feb;2(2):123–128. doi: 10.1038/84219. [DOI] [PubMed] [Google Scholar]
- Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
- Ransohoff R. M., Bacon K. B. Chemokine receptor antagonism as a new therapy for multiple sclerosis. Expert Opin Investig Drugs. 2000 May;9(5):1079–1097. doi: 10.1517/13543784.9.5.1079. [DOI] [PubMed] [Google Scholar]
- Ransohoff R. M., Hamilton T. A., Tani M., Stoler M. H., Shick H. E., Major J. A., Estes M. L., Thomas D. M., Tuohy V. K. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 1993 Apr 1;7(6):592–600. doi: 10.1096/fasebj.7.6.8472896. [DOI] [PubMed] [Google Scholar]
- Rempel S. A., Dudas S., Ge S., Gutiérrez J. A. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res. 2000 Jan;6(1):102–111. [PubMed] [Google Scholar]
- SCHUMACHER G. A., BEEBE G., KIBLER R. F., KURLAND L. T., KURTZKE J. F., MCDOWELL F., NAGLER B., SIBLEY W. A., TOURTELLOTTE W. W., WILLMON T. L. PROBLEMS OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS: REPORT BY THE PANEL ON THE EVALUATION OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS. Ann N Y Acad Sci. 1965 Mar 31;122:552–568. doi: 10.1111/j.1749-6632.1965.tb20235.x. [DOI] [PubMed] [Google Scholar]
- Simpson J. E., Newcombe J., Cuzner M. L., Woodroofe M. N. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol. 1998 Apr 15;84(2):238–249. doi: 10.1016/s0165-5728(97)00208-7. [DOI] [PubMed] [Google Scholar]
- Simpson J. E., Newcombe J., Cuzner M. L., Woodroofe M. N. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2000 Apr;26(2):133–142. doi: 10.1046/j.1365-2990.2000.026002133.x. [DOI] [PubMed] [Google Scholar]
- Sørensen T. L., Tani M., Jensen J., Pierce V., Lucchinetti C., Folcik V. A., Qin S., Rottman J., Sellebjerg F., Strieter R. M. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999 Mar;103(6):807–815. doi: 10.1172/JCI5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Der Voorn P., Tekstra J., Beelen R. H., Tensen C. P., Van Der Valk P., De Groot C. J. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol. 1999 Jan;154(1):45–51. doi: 10.1016/S0002-9440(10)65249-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma M. J., Lloyd A., Rager H., Strieter R., Kunkel S., Taub D., Wakefield D. Chemokines in acute anterior uveitis. Curr Eye Res. 1997 Dec;16(12):1202–1208. doi: 10.1076/ceyr.16.12.1202.5034. [DOI] [PubMed] [Google Scholar]
- Zhang G. X., Baker C. M., Kolson D. L., Rostami A. M. Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. Mult Scler. 2000 Feb;6(1):3–13. doi: 10.1177/135245850000600103. [DOI] [PubMed] [Google Scholar]
