Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):480–484. doi: 10.1128/iai.64.2.480-484.1996

Functional analysis of pneumolysin by use of monoclonal antibodies.

J R de los Toyos 1, F J Méndez 1, J F Aparicio 1, F Vázquez 1, M Del Mar García Suárez 1, A Fleites 1, C Hardisson 1, P J Morgan 1, P W Andrew 1, T J Mitchell 1
PMCID: PMC173789  PMID: 8550195

Abstract

We have produced a panel of monoclonal antibodies to pneumolysin, the membrane-damaging toxin from Streptococcus pneumoniae. We have used these antibodies to identify three regions of the toxin sequence that are involved in the lytic mechanism of this toxin. Two of these sites probably form the cell binding site of this toxin. Antibodies to the third site inhibit the lytic action of this toxin but not the binding of this toxin to cells. This site is engaged in the oligomerization process involved in the formation of pores in cell membranes. Two of these epitopes are also present in the related toxin perfringolysin O.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. E., Lock R. A., Peeters C. C., Poolman J. T., Andrew P. W., Mitchell T. J., Hansman D., Paton J. C. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun. 1994 Dec;62(12):5683–5688. doi: 10.1128/iai.62.12.5683-5688.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry A. M., Yother J., Briles D. E., Hansman D., Paton J. C. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun. 1989 Jul;57(7):2037–2042. doi: 10.1128/iai.57.7.2037-2042.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulnois G. J., Paton J. C., Mitchell T. J., Andrew P. W. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae. Mol Microbiol. 1991 Nov;5(11):2611–2616. doi: 10.1111/j.1365-2958.1991.tb01969.x. [DOI] [PubMed] [Google Scholar]
  4. Canvin J. R., Marvin A. P., Sivakumaran M., Paton J. C., Boulnois G. J., Andrew P. W., Mitchell T. J. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect Dis. 1995 Jul;172(1):119–123. doi: 10.1093/infdis/172.1.119. [DOI] [PubMed] [Google Scholar]
  5. Dick T. B., Gemmell C. G. The pathogenesis of pneumococcal infection in mice. J Med Microbiol. 1971 May;4(2):153–163. doi: 10.1099/00222615-4-2-153. [DOI] [PubMed] [Google Scholar]
  6. Hugo F., Reichwein J., Arvand M., Krämer S., Bhakdi S. Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infect Immun. 1986 Dec;54(3):641–645. doi: 10.1128/iai.54.3.641-645.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jameson B. A., Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988 Mar;4(1):181–186. doi: 10.1093/bioinformatics/4.1.181. [DOI] [PubMed] [Google Scholar]
  8. Mitchell T. J., Walker J. A., Saunders F. K., Andrew P. W., Boulnois G. J. Expression of the pneumolysin gene in Escherichia coli: rapid purification and biological properties. Biochim Biophys Acta. 1989 Jan 23;1007(1):67–72. doi: 10.1016/0167-4781(89)90131-0. [DOI] [PubMed] [Google Scholar]
  9. Morgan P. J., Hyman S. C., Rowe A. J., Mitchell T. J., Andrew P. W., Saibil H. R. Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. FEBS Lett. 1995 Aug 28;371(1):77–80. doi: 10.1016/0014-5793(95)00887-f. [DOI] [PubMed] [Google Scholar]
  10. Nato F., Reich K., Lhopital S., Rouyre S., Geoffroy C., Mazie J. C., Cossart P. Production and characterization of neutralizing and nonneutralizing monoclonal antibodies against listeriolysin O. Infect Immun. 1991 Dec;59(12):4641–4646. doi: 10.1128/iai.59.12.4641-4646.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Owen R. H., Boulnois G. J., Andrew P. W., Mitchell T. J. A role in cell-binding for the C-terminus of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. FEMS Microbiol Lett. 1994 Aug 15;121(2):217–221. doi: 10.1111/j.1574-6968.1994.tb07101.x. [DOI] [PubMed] [Google Scholar]
  12. Paton J. C., Andrew P. W., Boulnois G. J., Mitchell T. J. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol. 1993;47:89–115. doi: 10.1146/annurev.mi.47.100193.000513. [DOI] [PubMed] [Google Scholar]
  13. Rath S., Stanley C. M., Steward M. W. An inhibition enzyme immunoassay for estimating relative antibody affinity and affinity heterogeneity. J Immunol Methods. 1988 Feb 10;106(2):245–249. doi: 10.1016/0022-1759(88)90204-9. [DOI] [PubMed] [Google Scholar]
  14. Rubins J. B., Charboneau D., Paton J. C., Mitchell T. J., Andrew P. W., Janoff E. N. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J Clin Invest. 1995 Jan;95(1):142–150. doi: 10.1172/JCI117631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salo P., Närvänen A., Leinonen M. Mapping of immunoreactive sites of pneumococcal pneumolysin by use of synthetic peptides. Infect Immun. 1993 Jul;61(7):2822–2826. doi: 10.1128/iai.61.7.2822-2826.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tuomanen E. I., Austrian R., Masure H. R. Pathogenesis of pneumococcal infection. N Engl J Med. 1995 May 11;332(19):1280–1284. doi: 10.1056/NEJM199505113321907. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES