Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):528–534. doi: 10.1128/iai.64.2.528-534.1996

Bacterial enzymes can add galactose alpha 1,3 to human erythrocytes and creates a senescence-associated epitope.

R M Hamadeh 1, G A Jarvis 1, P Zhou 1, A C Cotleur 1, J M Griffiss 1
PMCID: PMC173797  PMID: 8550203

Abstract

Humans have abundant circulating anti-alpha (1,3-di)-galactosyl (alpha Gal) antibodies (anti-Gal). Anti-Gal has been implicated in the clearance of senescent human erythrocytes (RBCs). The nature of the anti-Gal-binding RBC epitope has defied explanation, given that humans repress expression of the alpha 1,3 galactosyltransferase (alpha 1,3 GT) enzyme. This study explored whether alpha Gal epitopes on human RBCs might be synthesized by alpha 1,3 GTs of bacterial origin that are translocated into the circulation during commensal colonization of the gut by gram-negative bacteria. We found that an acellular Klebsiella pneumoniae sonicate could add 3H-UDP-Gal to human RBCs in the alpha configuration at 37 degrees C in the presence of 6 mM MnCl2 (pH 7.6). Gradient anion-exchange chromatography of the Klebsiella sonicate yielded four fractions that could catalyze the addition of 3H-Gal to human RBCs. Size-exclusion chromatography of these anion-exchange fractions yielded peaks of high GT activity for each, but only those derived from the first, third, and last anion-exchange fractions incorporated Gal such that the RBCs bound anti-Gal by fluorescence-activated cell sorter, suggesting that these three GTs are alpha 1,3 GTs. Thus, Klebsiella spp. make at least four GTs that can add an alpha Gal to human cell surface acceptor structures. Three of these GTs can form alpha 1,3 Gal structures on human RBCs that bind anti-Gal, thereby creating "autoimmune" senescence-associated RBC epitopes.

Full Text

The Full Text of this article is available as a PDF (287.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apicella M. A., Shero M., Jarvis G. A., Griffiss J. M., Mandrell R. E., Schneider H. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect Immun. 1987 Aug;55(8):1755–1761. doi: 10.1128/iai.55.8.1755-1761.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Björndal H., Lindberg B., Nimmich W. Structural studies on Klebsiella O groups 1 and 6 lipopolysaccharides. Acta Chem Scand. 1971;25(2):750–750. doi: 10.3891/acta.chem.scand.25-0750. [DOI] [PubMed] [Google Scholar]
  3. Endo A., Rothfield L. Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose: lipopolysaccharide alpha-3-galactosyl transferase. Biochemistry. 1969 Sep;8(9):3500–3507. doi: 10.1021/bi00837a003. [DOI] [PubMed] [Google Scholar]
  4. Galili U., Flechner I., Knyszynski A., Danon D., Rachmilewitz E. A. The natural anti-alpha-galactosyl IgG on human normal senescent red blood cells. Br J Haematol. 1986 Feb;62(2):317–324. doi: 10.1111/j.1365-2141.1986.tb02935.x. [DOI] [PubMed] [Google Scholar]
  5. Galili U., Macher B. A., Buehler J., Shohet S. B. Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1----3)-linked galactose residues. J Exp Med. 1985 Aug 1;162(2):573–582. doi: 10.1084/jem.162.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Galili U., Rachmilewitz E. A., Peleg A., Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984 Nov 1;160(5):1519–1531. doi: 10.1084/jem.160.5.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galili U., Shohet S. B., Kobrin E., Stults C. L., Macher B. A. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988 Nov 25;263(33):17755–17762. [PubMed] [Google Scholar]
  9. Hamadeh R. M., Galili U., Zhou P., Griffiss J. M. Anti-alpha-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin Diagn Lab Immunol. 1995 Mar;2(2):125–131. doi: 10.1128/cdli.2.2.125-131.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamadeh R. M., Jarvis G. A., Galili U., Mandrell R. E., Zhou P., Griffiss J. M. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. 1992 Apr;89(4):1223–1235. doi: 10.1172/JCI115706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamadeh R. M., Mandrell R. E., Griffiss J. M. Immunophysical characterization of human isolates of Serratia marcescens. J Clin Microbiol. 1990 Jan;28(1):20–26. doi: 10.1128/jcm.28.1.20-26.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacob A. I., Goldberg P. K., Bloom N., Degenshein G. A., Kozinn P. J. Endotoxin and bacteria in portal blood. Gastroenterology. 1977 Jun;72(6):1268–1270. [PubMed] [Google Scholar]
  13. Joziasse D. H., Shaper J. H., Van den Eijnden D. H., Van Tunen A. J., Shaper N. L. Bovine alpha 1----3-galactosyltransferase: isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem. 1989 Aug 25;264(24):14290–14297. [PubMed] [Google Scholar]
  14. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  15. Krause W., Matheis H., Wulf K. Fungaemia and funguria after oral administration of Candida albicans. Lancet. 1969 Mar 22;1(7595):598–599. doi: 10.1016/s0140-6736(69)91534-7. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Larsen R. D., Rivera-Marrero C. A., Ernst L. K., Cummings R. D., Lowe J. B. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase cDNA. J Biol Chem. 1990 Apr 25;265(12):7055–7061. [PubMed] [Google Scholar]
  18. Lumsden A. B., Henderson J. M., Kutner M. H. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology. 1988 Mar-Apr;8(2):232–236. doi: 10.1002/hep.1840080207. [DOI] [PubMed] [Google Scholar]
  19. Lüderitz O., Simmons D. A., Westphal G. The immunochemistry of Salmonella chemotype VI O-antigens. The structure of oligosaccharides from Salmonella group U (o 43) lipopolysaccharides. Biochem J. 1965 Dec;97(3):820–826. doi: 10.1042/bj0970820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Piomelli S., Seaman C. Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol. 1993 Jan;42(1):46–52. doi: 10.1002/ajh.2830420110. [DOI] [PubMed] [Google Scholar]
  21. Schwab J. H. Phlogistic properties of peptidoglycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonize humans. Infect Immun. 1993 Nov;61(11):4535–4539. doi: 10.1128/iai.61.11.4535-4539.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sedman P. C., Macfie J., Sagar P., Mitchell C. J., May J., Mancey-Jones B., Johnstone D. The prevalence of gut translocation in humans. Gastroenterology. 1994 Sep;107(3):643–649. doi: 10.1016/0016-5085(94)90110-4. [DOI] [PubMed] [Google Scholar]
  23. Sorette M. P., Galili U., Clark M. R. Comparison of serum anti-band 3 and anti-Gal antibody binding to density-separated human red blood cells. Blood. 1991 Feb 1;77(3):628–636. [PubMed] [Google Scholar]
  24. Steffen E. K., Berg R. D., Deitch E. A. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis. 1988 May;157(5):1032–1038. doi: 10.1093/infdis/157.5.1032. [DOI] [PubMed] [Google Scholar]
  25. Waugh R. E., Narla M., Jackson C. W., Mueller T. J., Suzuki T., Dale G. L. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood. 1992 Mar 1;79(5):1351–1358. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES