Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):535–541. doi: 10.1128/iai.64.2.535-541.1996

A Th1-associated increase in tumor necrosis factor alpha expression in the spleen correlates with resistance to blood-stage malaria in mice.

P Jacobs 1, D Radzioch 1, M M Stevenson 1
PMCID: PMC173798  PMID: 8550204

Abstract

We investigated the kinetics of tissue-specific mRNA expression and systemic production of tumor necrosis factor alpha (TNF-alpha) and the kinetics of splenic expression of mRNAs of gamma interferon (INF-gamma) and interleukin-4 (IL-4), cytokines that may regulate TNF-alpha production, during the early phase of blood-stage infection with Plasmodium chabaudi AS. Northern blot analysis revealed that resistant C57BL/6 mice, which clear the infection by 4 weeks, had higher levels of TNF-alpha mRNA in the spleen and liver early during infection that did susceptible A/J mice, which succumb to the disease 10 days after initiation of infection. Treatment of resistant mice with a polyclonal anti-TNF-alpha antibody confirmed the protective role of TNF-alpha early during the course of infection. Furthermore, resistant C57BL/6 mice also expressed high levels of mRNA of IFN-gamma (a Th1 marker) and low levels of mRNA of IL-4 (a Th2 marker) in the spleen, whereas susceptible A/J mice had low levels of IFN-gamma mRNA but high levels of TNF-alpha mRNA in the liver and had high levels of TNF-alpha protein in serum, as measured by enzyme-linked immunosorbent assay, later during infection just before death occurred. These results demonstrate that a Th1-associated increase in TNF-alpha mRNA expression in the spleen early during infection correlates with resistance to P. chabaudi AS, whereas increased TNF-alpha mRNA levels in the liver and excessive levels of the TNF-alpha protein in serum later during infection correlate with susceptibility. Thus, the role of the TNF-alpha during malaria appears to depend on the timing and site of its expression and the presence of cytokines regulating its production.

Full Text

The Full Text of this article is available as a PDF (465.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bate C. A., Taverne J., Playfair J. H. Soluble malarial antigens are toxic and induce the production of tumour necrosis factor in vivo. Immunology. 1989 Apr;66(4):600–605. [PMC free article] [PubMed] [Google Scholar]
  2. Beutler B., Grau G. E. Tumor necrosis factor in the pathogenesis of infectious diseases. Crit Care Med. 1993 Oct;21(10 Suppl):S423–S435. [PubMed] [Google Scholar]
  3. Bromberg J. S., Chavin K. D., Kunkel S. L. Anti-tumor necrosis factor antibodies suppress cell-mediated immunity in vivo. J Immunol. 1992 Jun 1;148(11):3412–3417. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Clark I. A., Chaudhri G. Tumour necrosis factor may contribute to the anaemia of malaria by causing dyserythropoiesis and erythrophagocytosis. Br J Haematol. 1988 Sep;70(1):99–103. doi: 10.1111/j.1365-2141.1988.tb02440.x. [DOI] [PubMed] [Google Scholar]
  6. Dockrell H. M., de Souza J. B., Playfair J. H. The role of the liver in immunity to blood-stage murine malaria. Immunology. 1980 Oct;41(2):421–430. [PMC free article] [PubMed] [Google Scholar]
  7. Grau G. E., Fajardo L. F., Piguet P. F., Allet B., Lambert P. H., Vassalli P. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science. 1987 Sep 4;237(4819):1210–1212. doi: 10.1126/science.3306918. [DOI] [PubMed] [Google Scholar]
  8. Harbrecht B. G., Di Silvio M., Demetris A. J., Simmons R. L., Billiar T. R. Tumor necrosis factor-alpha regulates in vivo nitric oxide synthesis and induces liver injury during endotoxemia. Hepatology. 1994 Oct;20(4 Pt 1):1055–1060. doi: 10.1002/hep.1840200439. [DOI] [PubMed] [Google Scholar]
  9. Hart P. H., Vitti G. F., Burgess D. R., Whitty G. A., Piccoli D. S., Hamilton J. A. Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A. 1989 May;86(10):3803–3807. doi: 10.1073/pnas.86.10.3803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Havell E. A. Production of tumor necrosis factor during murine listeriosis. J Immunol. 1987 Dec 15;139(12):4225–4231. [PubMed] [Google Scholar]
  11. Hsieh C. S., Macatonia S. E., Tripp C. S., Wolf S. F., O'Garra A., Murphy K. M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23;260(5107):547–549. doi: 10.1126/science.8097338. [DOI] [PubMed] [Google Scholar]
  12. Jacobs P., Radzioch D., Stevenson M. M. In vivo regulation of nitric oxide production by tumor necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage malaria in mice. Infect Immun. 1996 Jan;64(1):44–49. doi: 10.1128/iai.64.1.44-49.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobs P., Radzioch D., Stevenson M. M. Nitric oxide expression in the spleen, but not in the liver, correlates with resistance to blood-stage malaria in mice. J Immunol. 1995 Dec 1;155(11):5306–5313. [PubMed] [Google Scholar]
  14. Johnson L. L. A protective role for endogenous tumor necrosis factor in Toxoplasma gondii infection. Infect Immun. 1992 May;60(5):1979–1983. doi: 10.1128/iai.60.5.1979-1983.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kamijo R., Le J., Shapiro D., Havell E. A., Huang S., Aguet M., Bosland M., Vilcek J. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guérin and subsequent challenge with lipopolysaccharide. J Exp Med. 1993 Oct 1;178(4):1435–1440. doi: 10.1084/jem.178.4.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karunaweera N. D., Grau G. E., Gamage P., Carter R., Mendis K. N. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3200–3203. doi: 10.1073/pnas.89.8.3200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kwiatkowski D., Hill A. V., Sambou I., Twumasi P., Castracane J., Manogue K. R., Cerami A., Brewster D. R., Greenwood B. M. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990 Nov 17;336(8725):1201–1204. doi: 10.1016/0140-6736(90)92827-5. [DOI] [PubMed] [Google Scholar]
  18. Kwiatkowski D., Molyneux M. E., Stephens S., Curtis N., Klein N., Pointaire P., Smit M., Allan R., Brewster D. R., Grau G. E. Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med. 1993 Feb;86(2):91–98. [PubMed] [Google Scholar]
  19. Langhorne J. The role of CD4+ T-cells in the immune response to Plasmodium chabaudi. Parasitol Today. 1989 Nov;5(11):362–364. doi: 10.1016/0169-4758(89)90113-0. [DOI] [PubMed] [Google Scholar]
  20. Nüssler A., Drapier J. C., Rénia L., Pied S., Miltgen F., Gentilini M., Mazier D. L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin 6 stimulation. Eur J Immunol. 1991 Jan;21(1):227–230. doi: 10.1002/eji.1830210134. [DOI] [PubMed] [Google Scholar]
  21. Podoba J. E., Stevenson M. M. CD4+ and CD8+ T lymphocytes both contribute to acquired immunity to blood-stage Plasmodium chabaudi AS. Infect Immun. 1991 Jan;59(1):51–58. doi: 10.1128/iai.59.1.51-58.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Radzioch D., Clayton M., Varesio L. Interferon-alpha, -beta, and -gamma augment the levels of rRNA precursors in peritoneal macrophages but not in macrophage cell lines and fibroblasts. J Immunol. 1987 Aug 1;139(3):805–812. [PubMed] [Google Scholar]
  23. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  24. Sheehan K. C., Ruddle N. H., Schreiber R. D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol. 1989 Jun 1;142(11):3884–3893. [PubMed] [Google Scholar]
  25. Stevenson M. M., Ghadirian E. Human recombinant tumor necrosis factor alpha protects susceptible A/J mice against lethal Plasmodium chabaudi AS infection. Infect Immun. 1989 Dec;57(12):3936–3939. doi: 10.1128/iai.57.12.3936-3939.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stevenson M. M., Huang D. Y., Podoba J. E., Nowotarski M. E. Macrophage activation during Plasmodium chabaudi AS infection in resistant C57BL/6 and susceptible A/J mice. Infect Immun. 1992 Mar;60(3):1193–1201. doi: 10.1128/iai.60.3.1193-1201.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stevenson M. M., Tam M. F. Differential induction of helper T cell subsets during blood-stage Plasmodium chabaudi AS infection in resistant and susceptible mice. Clin Exp Immunol. 1993 Apr;92(1):77–83. doi: 10.1111/j.1365-2249.1993.tb05951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stevenson M. M., Tam M. F., Rae D. Dependence on cell-mediated mechanisms for the appearance of crisis forms during Plasmodium chabaudi AS infection in C57BL/6 mice. Microb Pathog. 1990 Nov;9(5):303–314. doi: 10.1016/0882-4010(90)90065-x. [DOI] [PubMed] [Google Scholar]
  29. Stevenson M. M., Tam M. F., Wolf S. F., Sher A. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol. 1995 Sep 1;155(5):2545–2556. [PubMed] [Google Scholar]
  30. Taverne J., Rahman D., Dockrell H. M., Alavi A., Leveton C., Playfair J. H. Activation of liver macrophages in murine malaria is enhanced by vaccination. Clin Exp Immunol. 1987 Dec;70(3):508–514. [PMC free article] [PubMed] [Google Scholar]
  31. Taverne J., Sheikh N., de Souza J. B., Playfair J. H., Probert L., Kollias G. Anaemia and resistance to malaria in transgenic mice expressing human tumour necrosis factor. Immunology. 1994 Jul;82(3):397–403. [PMC free article] [PubMed] [Google Scholar]
  32. Taverne J., Tavernier J., Fiers W., Playfair J. H. Recombinant tumour necrosis factor inhibits malaria parasites in vivo but not in vitro. Clin Exp Immunol. 1987 Jan;67(1):1–4. [PMC free article] [PubMed] [Google Scholar]
  33. Urquhart A. D. Putative pathophysiological interactions of cytokines and phagocytic cells in severe human falciparum malaria. Clin Infect Dis. 1994 Jul;19(1):117–131. doi: 10.1093/clinids/19.1.117. [DOI] [PubMed] [Google Scholar]
  34. Waki S., Uehara S., Kanbe K., Ono K., Suzuki M., Nariuchi H. The role of T cells in pathogenesis and protective immunity to murine malaria. Immunology. 1992 Apr;75(4):646–651. [PMC free article] [PubMed] [Google Scholar]
  35. de Kossodo S., Grau G. E. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol. 1993 Nov 1;151(9):4811–4820. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES