Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2002 Sep;73(3):289–293. doi: 10.1136/jnnp.73.3.289

Semiquantitative analysis of corpus callosum injury using magnetic resonance imaging indicates clinical severity in patients with diffuse axonal injury

M Takaoka 1, H Tabuse 1, E Kumura 1, S Nakajima 1, T Tsuzuki 1, K Nakamura 1, A Okada 1, H Sugimoto 1
PMCID: PMC1738015  PMID: 12185160

Abstract

Objective: To evaluate the hypothesis that the extent of corpus callosum injury indicates the depth of shearing lesions in the central brain structure and therefore relates to the clinical severity of diffuse axonal injury.

Methods: A simple and objective procedure for semiquantitative analysis of magnetic resonance images (MRI)—the maximum signal intensity ratio (MSIR)—was employed prospectively in 21 patients with diffuse axonal injury but without apparent injury to the ventral pons. All were diagnosed using serial combination MRI scans of fluid attenuated inversion recovery (FLAIR) and T2* weighted gradient echo imaging during the initial two weeks after the injury. The signal intensity ratio between the two regions of interest—the corpus callosum and the normal appearing ventral pons—was calculated serially in mid-sagittal and parasagittal FLAIR image sections in each patient. The MSIR during the study period was determined as a semiquantitative index of corpus callosum injury in each patient. The correlations between MSIR and the duration of unconsciousness, Glasgow outcome scale at six months, and the presence of apparent midbrain injury were investigated.

Results: The mean (SD) MSIR value was 1.12 (0.18) at 7.4 (3.1) days after the injury (n = 21). MSIR correlated strongly with the duration of unconsciousness (n = 19, R2 = 0.74, p < 0.0001), and was higher in patients with both an unfavourable GOS outcome (p = 0.020) and apparent midbrain injury (p < 0.001).

Conclusions: MSIR, which is a simple and objective procedure for semiquantitative analysis of corpus callosum damage in diffuse axonal injury, correlated with clinical severity. A high MSIR value may indicate the presence of concomitant midbrain injury.

Full Text

The Full Text of this article is available as a PDF (151.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. H., Doyle D., Ford I., Gennarelli T. A., Graham D. I., McLellan D. R. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989 Jul;15(1):49–59. doi: 10.1111/j.1365-2559.1989.tb03040.x. [DOI] [PubMed] [Google Scholar]
  2. Adams J. H., Graham D. I., Murray L. S., Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982 Dec;12(6):557–563. doi: 10.1002/ana.410120610. [DOI] [PubMed] [Google Scholar]
  3. Ashikaga R., Araki Y., Ishida O. MRI of head injury using FLAIR. Neuroradiology. 1997 Apr;39(4):239–242. doi: 10.1007/s002340050401. [DOI] [PubMed] [Google Scholar]
  4. Coulthard A., Hall K., English P. T., Ince P. G., Burn D. J., Bates D. Quantitative analysis of MRI signal intensity in new variant Creutzfeldt-Jakob disease. Br J Radiol. 1999 Aug;72(860):742–748. doi: 10.1259/bjr.72.860.10624339. [DOI] [PubMed] [Google Scholar]
  5. Gennarelli T. A., Thibault L. E., Adams J. H., Graham D. I., Thompson C. J., Marcincin R. P. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982 Dec;12(6):564–574. doi: 10.1002/ana.410120611. [DOI] [PubMed] [Google Scholar]
  6. Gentry L. R., Godersky J. C., Thompson B. H. Traumatic brain stem injury: MR imaging. Radiology. 1989 Apr;171(1):177–187. doi: 10.1148/radiology.171.1.2928523. [DOI] [PubMed] [Google Scholar]
  7. Gentry L. R., Thompson B., Godersky J. C. Trauma to the corpus callosum: MR features. AJNR Am J Neuroradiol. 1988 Nov-Dec;9(6):1129–1138. [PMC free article] [PubMed] [Google Scholar]
  8. Grados M. A., Slomine B. S., Gerring J. P., Vasa R., Bryan N., Denckla M. B. Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. J Neurol Neurosurg Psychiatry. 2001 Mar;70(3):350–358. doi: 10.1136/jnnp.70.3.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jennett B., Snoek J., Bond M. R., Brooks N. Disability after severe head injury: observations on the use of the Glasgow Outcome Scale. J Neurol Neurosurg Psychiatry. 1981 Apr;44(4):285–293. doi: 10.1136/jnnp.44.4.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kampfl A., Franz G., Aichner F., Pfausler B., Haring H. P., Felber S., Luz G., Schocke M., Schmutzhard E. The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg. 1998 May;88(5):809–816. doi: 10.3171/jns.1998.88.5.0809. [DOI] [PubMed] [Google Scholar]
  11. Laissy J. P., Patrux B., Duchateau C., Hannequin D., Hugonet P., Ait-Yahia H., Thiebot J. Midsagittal MR measurements of the corpus callosum in healthy subjects and diseased patients: a prospective survey. AJNR Am J Neuroradiol. 1993 Jan-Feb;14(1):145–154. [PMC free article] [PubMed] [Google Scholar]
  12. Levin H. S., Mendelsohn D., Lilly M. A., Yeakley J., Song J., Scheibel R. S., Harward H., Fletcher J. M., Kufera J. A., Davidson K. C. Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya-Gennarelli model. Neurosurgery. 1997 Mar;40(3):432–441. doi: 10.1097/00006123-199703000-00002. [DOI] [PubMed] [Google Scholar]
  13. Liu A. Y., Maldjian J. A., Bagley L. J., Sinson G. P., Grossman R. I. Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol. 1999 Oct;20(9):1636–1641. [PMC free article] [PubMed] [Google Scholar]
  14. Shibata Y., Matsumura A., Meguro K., Narushima K. Differentiation of mechanism and prognosis of traumatic brain stem lesions detected by magnetic resonance imaging in the acute stage. Clin Neurol Neurosurg. 2000 Sep;102(3):124–128. doi: 10.1016/s0303-8467(00)00095-0. [DOI] [PubMed] [Google Scholar]
  15. Smith D. H., Meaney D. F., Lenkinski R. E., Alsop D. C., Grossman R., Kimura H., McIntosh T. K., Gennarelli T. A. New magnetic resonance imaging techniques for the evaluation of traumatic brain injury. J Neurotrauma. 1995 Aug;12(4):573–577. doi: 10.1089/neu.1995.12.573. [DOI] [PubMed] [Google Scholar]
  16. Smith D. H., Nonaka M., Miller R., Leoni M., Chen X. H., Alsop D., Meaney D. F. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg. 2000 Aug;93(2):315–322. doi: 10.3171/jns.2000.93.2.0315. [DOI] [PubMed] [Google Scholar]
  17. Tokutomi T., Hirohata M., Miyagi T., Abe T., Shigemori M. Posttraumatic edema in the corpus callosum shown by MRI. Acta Neurochir Suppl. 1997;70:80–83. doi: 10.1007/978-3-7091-6837-0_25. [DOI] [PubMed] [Google Scholar]
  18. Yanagawa Y., Tsushima Y., Tokumaru A., Un-no Y., Sakamoto T., Okada Y., Nawashiro H., Shima K. A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma. 2000 Aug;49(2):272–277. doi: 10.1097/00005373-200008000-00013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES